Journal of International Reproductive Health/Family Planning ›› 2024, Vol. 43 ›› Issue (5): 415-419.doi: 10.12280/gjszjk.20240196
• Review • Previous Articles Next Articles
JIANG Nan, ZHAO Xiao-li, LUAN Zu-qian, HUANG Zhi-yun, XIA Tian()
Received:
2024-04-24
Published:
2024-09-15
Online:
2024-09-19
Contact:
XIA Tian
E-mail:xiatian76@163.com
JIANG Nan, ZHAO Xiao-li, LUAN Zu-qian, HUANG Zhi-yun, XIA Tian. Research Progress on the Correlation between Oxidative Stress and Aneuploidy in Oocytes of Aging Women[J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 415-419.
Add to citation manager EndNote|Ris|BibTeX
[1] | Llarena N, Hine C. Reproductive Longevity and Aging: Geroscience Approaches to Maintain Long-Term Ovarian Fitness[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(9):1551-1560. doi: 10.1093/gerona/glaa204. |
[2] | Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age[J]. Mutat Res Rev Mutat Res, 2020, 785:108320. doi: 10.1016/j.mrrev.2020.108320. |
[3] | Rizzo M, du Preez N, Ducheyne KD, et al. The horse as a natural model to study reproductive aging-induced aneuploidy and weakened centromeric cohesion in oocytes[J]. Aging(Albany NY), 2020, 12(21):22220-22232. doi: 10.18632/aging.104159. |
[4] | Ma JY, Li S, Chen LN, et al. Why is oocyte aneuploidy increased with maternal aging?[J]. J Genet Genomics, 2020, 47(11):659-671. doi: 10.1016/j.jgg.2020.04.003. |
[5] | Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing[J]. Nat Rev Mol Cell Biol, 2023, 24(1):27-44. doi: 10.1038/s41580-022-00517-3. |
[6] | Peters AE, Mihalas BP, Bromfield EG, et al. Autophagy in Female Fertility: A Role in Oxidative Stress and Aging[J]. Antioxid Redox Signal, 2020, 32(8):550-568. doi: 10.1089/ars.2019.7986. |
[7] |
Wang L, Tang J, Wang L, et al. Oxidative stress in oocyte aging and female reproduction[J]. J Cell Physiol, 2021, 236(12):7966-7983. doi: 10.1002/jcp.30468.
pmid: 34121193 |
[8] |
Zhang T, Xi Q, Wang D, et al. Mitochondrial dysfunction and endoplasmic reticulum stress involved in oocyte aging: an analysis using single-cell RNA-sequencing of mouse oocytes[J]. J Ovarian Res, 2019, 12(1):53. doi: 10.1186/s13048-019-0529-x.
pmid: 31176373 |
[9] | Wang H, Xu J, Li H, et al. Alpha-ketoglutarate supplementation ameliorates ovarian reserve and oocyte quality decline with aging in mice[J]. Mol Cell Endocrinol, 2023, 571:111935. doi: 10.1016/j.mce.2023.111935. |
[10] | Al-Zubaidi U, Adhikari D, Cinar O, et al. Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes[J]. Hum Reprod, 2021, 36(3):771-784. doi: 10.1093/humrep/deaa300. |
[11] | Wu T, Dong J, Fu J, et al. The mechanism of acentrosomal spindle assembly in human oocytes[J]. Science, 2022, 378(6621):eabq7361. doi: 10.1126/science.abq7361. |
[12] | Gao W, Zhang C, Li B, et al. Azoxystrobin exposure impairs meiotic maturation by disturbing spindle formation in mouse oocytes[J]. Front Cell Dev Biol, 2022, 10:1053654. doi: 10.3389/fcell.2022.1053654. |
[13] | Rizzo M, Stout T, Cristarella S, et al. Compromised MPS1 Activity Induces Multipolar Spindle Formation in Oocytes From Aged Mares: Establishing the Horse as a Natural Animal Model to Study Age-Induced Oocyte Meiotic Spindle Instability[J]. Front Cell Dev Biol, 2021, 9:657366. doi: 10.3389/fcell.2021.657366. |
[14] | Ju JQ, Li XH, Pan MH, et al. Mps1 controls spindle assembly, SAC, and DNA repair in the first cleavage of mouse early embryos[J]. J Cell Biochem, 2021, 122(2):290-300. doi: 10.1002/jcb.29858. |
[15] | Kasai S, Shimizu S, Tatara Y, et al. Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology[J]. Biomolecules, 2020, 10(2):320. doi: 10.3390/biom10020320. |
[16] | Li XH, Li WJ, Ju JQ, et al. CHK2 is essential for spindle assembly and DNA repair during the first cleavage of mouse embryos[J]. Aging(Albany NY), 2020, 12(11):10415-10426. doi: 10.18632/aging.103267. |
[17] |
Kwon J, Lee S, Kim YN, et al. Deacetylation of CHK2 by SIRT1 protects cells from oxidative stress-dependent DNA damage response[J]. Exp Mol Med, 2019, 51(3):1-9. doi: 10.1038/s12276-019-0232-4.
pmid: 30902968 |
[18] | Yatskevich S, Kroonen JS, Alfieri C, et al. Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation[J]. Cell Rep, 2021, 34(13):108929. doi: 10.1016/j.celrep.2021.108929. |
[19] |
Marston AL, Wassmann K. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis[J]. Front Cell Dev Biol, 2017, 5:109. doi: 10.3389/fcell.2017.00109.
pmid: 29322045 |
[20] | Blengini CS, Nguyen AL, Aboelenain M, et al. Age-dependent integrity of the meiotic spindle assembly checkpoint in females requires Aurora kinase B[J]. Aging Cell, 2021, 20(11):e13489. doi: 10.1111/acel.13489. |
[21] |
Chowdhury M, Wang SW, Suen CS, et al. JAK2-CHK2 signaling safeguards the integrity of the mitotic spindle assembly checkpoint and genome stability[J]. Cell Death Dis, 2022, 13(7):619. doi: 10.1038/s41419-022-05077-0.
pmid: 35851582 |
[22] |
Riris S, Webster P, Homer H. Digital multiplexed mRNA analysis of functionally important genes in single human oocytes and correlation of changes in transcript levels with oocyte protein expression[J]. Fertil Steril, 2014, 101(3):857-864. doi: 10.1016/j.fertnstert.2013.11.125.
pmid: 24444598 |
[23] | Kordowitzki P. Oxidative Stress Induces Telomere Dysfunction and Shortening in Human Oocytes of Advanced Age Donors[J]. Cells, 2021, 10(8):1866. doi: 10.3390/cells10081866. |
[24] | Yu TN, Cheng EH, Tsai HN, et al. Assessment of Telomere Length and Mitochondrial DNA Copy Number in Granulosa Cells as Predictors of Aneuploidy Rate in Young Patients[J]. J Clin Med, 2022, 11(7):1824. doi: 10.3390/jcm11071824. |
[25] | Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms[J]. Ageing Res Rev, 2022, 73:101507. doi: 10.1016/j.arr.2021.101507. |
[26] | Min S, Kwon SM, Hong J, et al. Mitoribosomal Deregulation Drives Senescence via TPP1-Mediated Telomere Deprotection[J]. Cells, 2022, 11(13):2079. doi: 10.3390/cells11132079. |
[27] | Jeon HJ, Oh JS. TRF1 Depletion Reveals Mutual Regulation Between Telomeres, Kinetochores, and Inner Centromeres in Mouse Oocytes[J]. Front Cell Dev Biol, 2021, 9:749116. doi: 10.3389/fcell.2021.749116. |
[28] | Jeon HJ, Kang M, Kim JS, et al. TCTP overexpression reverses age-associated telomere attrition by upregulating telomerase activity in mouse oocytes[J]. J Cell Physiol, 2022, 237(1):833-845. doi: 10.1002/jcp.30557. |
[29] | Yun Y, Lee S, So C, et al. Oocyte Development and Quality in Young and Old Mice following Exposure to Atrazine[J]. Environ Health Perspect, 2022, 130(11):117007. doi: 10.1289/EHP11343. |
[30] | Shimoi G, Wakabayashi R, Ishikawa R, et al. Effects of post-ovulatory aging on centromeric cohesin protection in murine MⅡ oocytes[J]. Reprod Med Biol, 2022, 21(1):10.1002/rmb2.12433. doi: 10.1002/rmb2.12433. |
[31] | Perkins AT, Das TM, Panzera LC, et al. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors[J]. Proc Natl Acad Sci U S A, 2016, 113(44):E6823-E6830. doi: 10.1073/pnas.1612047113. |
[32] | Ma L, Cai L, Hu M, et al. Coenzyme Q10 supplementation of human oocyte in vitro maturation reduces postmeiotic aneuploidies[J]. Fertil Steril, 2020, 114(2):331-337. doi: 10.1016/j.fertnstert.2020.04.002. |
[33] | Zhang H, Li C, Wen D, et al. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply[J]. Redox Biol, 2022, 49:102215. doi: 10.1016/j.redox.2021.102215. |
[34] | Miao Y, Cui Z, Gao Q, et al. Nicotinamide Mononucleotide Supplementation Reverses the Declining Quality of Maternally Aged Oocytes[J]. Cell Rep, 2020, 32(5):107987. doi: 10.1016/j.celrep.2020.107987. |
[35] | Qu J, Qin L, Guo J, et al. Near-infrared fluorophore IR-61 improves the quality of oocytes in aged mice via mitochondrial protection[J]. Biomed Pharmacother, 2023, 162:114571. doi: 10.1016/j.biopha.2023.114571. |
[36] | Li C, Zhang H, Wu H, et al. Intermittent fasting reverses the declining quality of aged oocytes[J]. Free Radic Biol Med, 2023, 195:74-88. doi: 10.1016/j.freeradbiomed.2022.12.084. |
[1] | YANG Qin, WANG Han-ting, CAO Yuan-yuan, ZHOU Jun, WANG Gui-ling. Effect of Resveratrol on the Function of Ovarian Granulose Cells [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 524-528. |
[2] | WANG Jun-yu, CHEN Wen-li, WU Rong-quan, JIANG Yu-ying, ZHUANG Jian-long. Application of Chromosome Microarray Technology in Genetic Etiology Diagnosis of Fetuses with Polyhydramnios [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 384-389. |
[3] | CHEN Xin-ying, HUANG Ting-ting, ZENG Shu-hong, JIANG Yu-ying, ZHUANG Jian-long. Genetic Etiology Analysis of A Case of Fetal Lymphedema [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 395-398. |
[4] | LI Jia-li, TU Xu-xu, WANG Shi-meng, NIU Ding-ren, FENG Xiao-ling. Recurrent Spontaneous Abortion Related to Oxidative Stress at Maternal-Fetal Interface [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 435-440. |
[5] | WEN Xing-xing, CHAI Meng-han, YANG Ni, ZOU Hui-juan, ZHANG Zhi-guo, LI Lin, CHEN Bei-li. A Case of Oocyte Maturation Arrest Caused by Heterozygous Variation of TUBB8 Gene c.154-156del [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 17-19. |
[6] | ZHANG Yu-jie, WANG Wen-cheng, ZHANG Ning. Research Progress of GDF-9 and BMP-15 on Follicular Development and Insulin Resistance in PCOS [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 487-491. |
[7] | YE Ming-zhu, ZHENG Jie, LI Jie-peng, XU Li-xin. Application of Oocyte Cryopreservation in Patients with Iatrogenic Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 498-502. |
[8] | YAN Hui-hui, ZHANG Yun-shan. Clinical Research Status of Mosaic Embryo Transfer [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 503-506. |
[9] | HE Yue, CUI Hong-mei. Research Progress of Ferroptosis in Obstetric Diseases [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 414-418. |
[10] | WANG Tian, MO Shao-kang, HUANG Bing-xue, WEI Lu-xiao, WANG Ling. Oxidative Stress in Ovary-Related Reproductive Disorders [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 317-322. |
[11] | LIU Xu, YANG Ai-jun, LI Ze-wu, SHI Cheng, LIU Li-jun, KONG Xiao-li, WANG Jing-wen. The Mechanism of Platelet-Rich Plasma on Improving Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 329-333. |
[12] | LI Yan, HU Fang-fang, CHEN Huan-huan, ZHANG Lei, ZHANG Cui-lian, LIANG Lin-lin. Research Progress of In Vitro Three-Dimensional Culture System of Preantral Follicles [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 221-225. |
[13] | YANG Zhi-juan, YAO Ting, HOU Hai-yan. Mitophagy and Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 240-244. |
[14] | CHEN Ruo-lin, ZHANG Yun-shan. Mechanisms and Clinical Relevance of Sperm DNA Damage [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 130-134. |
[15] | ZHANG An-ni, WEI Lin-fei, LI Ning, ZHOU Xin-yue, ZHANG Xue-hong. The Role of Telomere and Telomerase in Female Reproductive Health [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 145-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||