国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (4): 317-321.doi: 10.12280/gjszjk.20220089
收稿日期:
2022-02-22
出版日期:
2022-07-15
发布日期:
2022-07-20
通讯作者:
夏天
E-mail:xiatian76@163.com
WANG Zi-xin, SONG Jia-yi, XIA Tian()
Received:
2022-02-22
Published:
2022-07-15
Online:
2022-07-20
Contact:
XIA Tian
E-mail:xiatian76@163.com
摘要:
昼夜节律是一种内源性的计时机制,可以调控人体所需的睡眠、饮食和生殖节律等。随着生活、工作模式的改变,昼夜节律紊乱已成为普遍关注的健康问题。卵巢功能反映卵巢皮质区基础卵泡生长发育的能力,包括卵泡的数量和质量,反映了女性的生育潜能。研究表明,昼夜节律与卵巢功能存在相关性。昼夜节律紊乱通过改变生殖激素的分泌、排卵、卵母细胞数量、褪黑素水平和时钟基因的表达影响卵巢功能。综述昼夜节律紊乱对卵巢功能的影响,为临床的研究及诊疗方向提供思路。
王子昕, 宋佳怡, 夏天. 昼夜节律紊乱对女性卵巢功能的影响[J]. 国际生殖健康/计划生育, 2022, 41(4): 317-321.
WANG Zi-xin, SONG Jia-yi, XIA Tian. Effect of Circadian Rhythm Disorder on Ovarian Function[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(4): 317-321.
[1] |
Zhang WX, Chen SY, Liu C. Regulation of reproduction by the circadian rhythms[J]. Acta Physiologica Sinica, 2016, 68(6):799-808. doi: 10.13294/j.aps.2016.0089.
doi: 10.13294/j.aps.2016.0089 |
[2] |
Zheng Y, Liu C, Li Y, et al. Loss-of-function mutations with circadian rhythm regulator Per1/Per2 lead to premature ovarian insufficiency[J]. Biol Reprod, 2019, 100(4):1066-1072. doi: 10.1093/biolre/ioy245.
doi: 10.1093/biolre/ioy245 URL |
[3] |
Li H, Liu M, Zhang C. Women with polycystic ovary syndrome (PCOS) have reduced melatonin concentrations in their follicles and have mild sleep disturbances[J]. BMC Womens Health, 2022, 22(1):79. doi: 10.1186/s12905-022-01661-w.
doi: 10.1186/s12905-022-01661-w URL |
[4] |
Wang F, Xie N, Wu Y, et al. Association between circadian rhythm disruption and polycystic ovary syndrome[J]. Fertil Steril, 2021, 115(3):771-781. doi: 10.1016/j.fertnstert.2020.08.1425.
doi: 10.1016/j.fertnstert.2020.08.1425 URL |
[5] |
Ohara T, Nakamura TJ, Nakamura W, et al. Modeling circadian regulation of ovulation timing: age-related disruption of estrous cyclicity[J]. Sci Rep, 2020, 10(1):16767. doi: 10.1038/s41598-020-73669-x.
doi: 10.1038/s41598-020-73669-x URL |
[6] |
白会强, 吴建涛, 王勇, 等. 睡眠障碍的中西医诊疗进展[J]. 中国社区医师, 2020, 36(26):7-8. doi: 10.3969/j.issn.1007-614x.2020.26.003.
doi: 10.3969/j.issn.1007-614x.2020.26.003 |
[7] |
Yaw AM, McLane-Svoboda AK, Hoffmann HM. Shiftwork and Light at Night Negatively Impact Molecular and Endocrine Timekeeping in the Female Reproductive Axis in Humans and Rodents[J]. Int J Mol Sci, 2020, 22(1):324. doi: 10.3390/ijms22010324.
doi: 10.3390/ijms22010324 URL |
[8] |
Pimolsri C, Lyu X, Goldstein C, et al. Objective sleep duration and timing predicts completion of in vitro fertilization cycle[J]. J Assist Reprod Genet, 2021, 38(10):2687-2696. doi: 10.1007/s10815-021-02260-8.
doi: 10.1007/s10815-021-02260-8 URL |
[9] |
Zhang L, Liu Y, Li M, et al. Effect of a high-calorie diet and constant light exposure on female reproduction, metabolism and immune inflammation: A comparative study of different mouse models[J]. Am J Reprod Immunol, 2021, 86(5):e13479. doi: 10.1111/aji.13479.
doi: 10.1111/aji.13479 |
[10] |
Sciarra F, Franceschini E, Campolo F, et al. Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Infertility[J]. Int J Mol Sci, 2020, 21(11):3943. doi: 10.3390/ijms21113943.
doi: 10.3390/ijms21113943 URL |
[11] |
Michels KA, Mendola P, Schliep KC, et al. The influences of sleep duration, chronotype, and nightwork on the ovarian cycle[J]. Chronobiol Int, 2020, 37(2):260-271. doi: 10.1080/07420528.2019.1694938.
doi: 10.1080/07420528.2019.1694938 pmid: 31778080 |
[12] |
Mahoney MM. Shift work, jet lag, and female reproduction[J]. Int J Endocrinol, 2010, 2010:813764. doi: 10.1155/2010/813764.
doi: 10.1155/2010/813764 |
[13] |
Leysen V, Prevot V. Reproductive Function During Chronodisruption: Model of Shiftwork in Rodents[J]. Endocrinology, 2020, 161(12):bqaa151. doi: 10.1210/endocr/bqaa151.
doi: 10.1210/endocr/bqaa151 URL |
[14] |
Merklinger-Gruchala A, Ellison PT, Lipson SF, et al. Low estradiol levels in women of reproductive age having low sleep variation[J]. Eur J Cancer Prev, 2008, 17(5):467-472. doi: 10.1097/CEJ.0b013e3282f75f67.
doi: 10.1097/CEJ.0b013e3282f75f67 pmid: 18714190 |
[15] |
陈昌钊, 吴汤娜, 符叶柳, 等. 女性基础性激素、抗苗勒管激素水平联合经阴道三维超声在卵巢储备功能评估中的作用[J]. 中华医学超声杂志(电子版), 2020, 17(12):1208-1212. doi: 10.3877/cma.j.issn.1672-6448.2020.12.012.
doi: 10.3877/cma.j.issn.1672-6448.2020.12.012 |
[16] |
Bungum L, Jacobsson AK, Rosén F, et al. Circadian variation in concentration of anti-Müllerian hormone in regularly menstruating females: relation to age, gonadotrophin and sex steroid levels[J]. Hum Reprod, 2011, 26(3):678-684. doi: 10.1093/humrep/deq380.
doi: 10.1093/humrep/deq380 URL |
[17] |
Zheng M, Zuo G, Tong J, et al. Intrafollicular melatonin concentration is elevated in patients with ovarian hyperstimulation syndrome (OHSS) and can serve as an important predictor of OHSS[J]. Arch Gynecol Obstet, 2019, 299(4):1151-1158. doi: 10.1007/s00404-018-4994-z.
doi: 10.1007/s00404-018-4994-z pmid: 30725184 |
[18] |
Komada Y, Ikeda Y, Sato M, et al. Social jetlag and menstrual symptoms among female university students[J]. Chronobiol Int, 2019, 36(2):258-264. doi: 10.1080/07420528.2018.1533561.
doi: 10.1080/07420528.2018.1533561 pmid: 30395733 |
[19] |
Stock D, Knight JA, Raboud J, et al. Rotating night shift work and menopausal age[J]. Hum Reprod, 2019, 34(3): 539-548. doi: 10.1093/humrep/dey390.
doi: 10.1093/humrep/dey390 |
[20] |
Willis SK, Hatch EE, Wise LA. Sleep and female reproduction[J]. Curr Opin Obstet Gynecol, 2019, 31(4):222-227. doi: 10.1097/GCO.0000000000000554.
doi: 10.1097/GCO.0000000000000554 URL |
[21] |
Li Y, Cheng S, Li L, et al. Light-exposure at night impairs mouse ovary development via cell apoptosis and DNA damage[J]. Biosci Rep, 2019, 39(5):BSR20181464. doi: 10.1042/BSR20181464.
doi: 10.1042/BSR20181464 URL |
[22] |
Mínguez-Alarcón L, Souter I, Williams PL, et al. Occupational factors and markers of ovarian reserve and response among women at a fertility centre[J]. Occup Environ Med, 2017, 74(6):426-431. doi: 10.1136/oemed-2016-103953.
doi: 10.1136/oemed-2016-103953 pmid: 28167499 |
[23] |
Goldstein CA, Lanham MS, Smith YR, et al. Sleep in women undergoing in vitro fertilization: a pilot study[J]. Sleep Med, 2017, 32:105-113. doi: 10.1016/j.sleep.2016.12.007.
doi: S1389-9457(16)30321-5 pmid: 28366321 |
[24] |
Rai S, Ghosh H. Modulation of human ovarian function by melatonin[J]. Front Biosci(Elite Ed), 2021, 13(1):140-157. doi: 10.2741/875.
doi: 10.2741/875 |
[25] |
Zheng M, Tong J, Li WP, et al. Melatonin concentration in follicular fluid is correlated with antral follicle count (AFC) and in vitro fertilization (IVF) outcomes in women undergoing assisted reproductive technology (ART) procedures[J]. Gynecol Endocrinol, 2018, 34(5):446-450. doi: 10.1080/09513590.2017.1409713.
doi: 10.1080/09513590.2017.1409713 pmid: 29185361 |
[26] |
Latif Khan H, Bhatti S, Latif Khan Y, et al. Cell-free nucleic acids and melatonin levels in human follicular fluid predict embryo quality in patients undergoing in-vitro fertilization treatment[J]. J Gynecol Obstet Hum Reprod, 2020, 49(1):101624. doi: 10.1016/j.jogoh.2019.08.007.
doi: 10.1016/j.jogoh.2019.08.007 URL |
[27] |
Hu KL, Ye X, Wang S, et al. Melatonin Application in Assisted Reproductive Technology: A Systematic Review and Meta-Analysis of Randomized Trials[J]. Front Endocrinol(Lausanne), 2020, 11:160. doi: 10.3389/fendo.2020.00160.
doi: 10.3389/fendo.2020.00160 |
[28] |
Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption[J]. Life Sci, 2017, 173:94-106. doi: 10.1016/j.lfs.2017.02.008.
doi: S0024-3205(17)30045-0 pmid: 28214594 |
[29] |
Li Y, Liu H, Wu K, et al. Melatonin promotes human oocyte maturation and early embryo development by enhancing clathrin-mediated endocytosis[J]. J Pineal Res, 2019, 67(3):e12601. doi: 10.1111/jpi.12601.
doi: 10.1111/jpi.12601 |
[30] |
Brzezinski A, Rai S, Purohit A, et al. Melatonin, Clock Genes, and Mammalian Reproduction: What Is the Link?[J]. Int J Mol Sci, 2021, 22(24):13240. doi: 10.3390/ijms222413240.
doi: 10.3390/ijms222413240 URL |
[31] |
Razavi P, Devore EE, Bajaj A, et al. Shift Work, Chronotype, and Melatonin Rhythm in Nurses[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(7):1177-1186. doi: 10.1158/1055-9965.EPI-18-1018.
doi: 10.1158/1055-9965.EPI-18-1018 URL |
[32] |
Shao S, Zhao H, Lu Z, et al. Circadian Rhythms Within the Female HPG Axis: From Physiology to Etiology[J]. Endocrinology, 2021, 162(8):bqab117. doi: 10.1210/endocr/bqab117.
doi: 10.1210/endocr/bqab117 URL |
[33] |
Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis[J]. Mol Cell Endocrinol, 2020, 501:110655. doi: 10.1016/j.mce.2019.110655.
doi: 10.1016/j.mce.2019.110655 URL |
[34] |
Jiang Z, Zou K, Liu X, et al. Aging attenuates the ovarian circadian rhythm[J]. J Assist Reprod Genet, 2021, 38(1):33-40. doi: 10.1007/s10815-020-01943-y.
doi: 10.1007/s10815-020-01943-y URL |
[35] |
Sun SY, Chen GH. Treatment of Circadian Rhythm Sleep-Wake Disorders[J]. Curr Neuropharmacol, 2022, 20(6):1022-1034. doi: 10.2174/1570159X19666210907122933.
doi: 10.2174/1570159X19666210907122933 URL |
[36] |
Moon E, Partonen T, Beaulieu S, et al. Melatonergic agents influence the sleep-wake and circadian rhythms in healthy and psychiatric participants: a systematic review and meta-analysis of randomized controlled trials[J]. Neuropsychopharmacology, 2022 Feb 4. doi: 10.1038/s41386-022-01278-5.
doi: 10.1038/s41386-022-01278-5 |
[37] |
Lim S, Park S, Koyanagi A, et al. Effects of exogenous melatonin supplementation on health outcomes: An umbrella review of meta-analyses based on randomized controlled trials[J]. Pharmacol Res, 2022, 176:106052. doi: 10.1016/j.phrs.2021.106052.
doi: 10.1016/j.phrs.2021.106052 URL |
[38] |
Yang C, Liu Q, Chen Y, et al. Melatonin delays ovarian aging in mice by slowing down the exhaustion of ovarian reserve[J]. Commun Biol, 2021, 4(1):534. doi: 10.1038/s42003-021-02042-z.
doi: 10.1038/s42003-021-02042-z URL |
[39] |
Li S, Zhai J, Chu W, et al. Altered circadian clock as a novel therapeutic target for constant darkness-induced insulin resistance and hyperandrogenism of polycystic ovary syndrome[J]. Transl Res, 2020, 219:13-29. doi: 10.1016/j.trsl.2020.02.003.
doi: 10.1016/j.trsl.2020.02.003 URL |
[40] |
Li C, Xing C, Zhang J, et al. Eight-hour time-restricted feeding improves endocrine and metabolic profiles in women with anovulatory polycystic ovary syndrome[J]. J Transl Med, 2021, 19(1):148. doi: 10.1186/s12967-021-02817-2.
doi: 10.1186/s12967-021-02817-2 URL |
[1] | 王嘉怡, 季慧, 李欣, 凌秀凤. 拮抗剂方案双扳机次日血清β-hCG水平对新鲜胚胎移植结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 447-452. |
[2] | 雷瑞祥, 万怡, 李钰滋, 关德凤, 张学红. 昼夜节律紊乱与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 501-505. |
[3] | 江楠, 赵晓丽, 栾祖乾, 黄志云, 夏天. 高龄女性卵母细胞内氧化应激与非整倍体相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 415-419. |
[4] | 王冬雪, 包莉莉, 刘珊, 杨波. 改良灵活拮抗剂方案对卵巢功能正常女性COH结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 185-189. |
[5] | 曹媛媛, 贾赞慧, 张春苗. ZP1基因突变在空卵泡综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 127-131. |
[6] | 闻星星, 柴梦晗, 杨倪, 邹慧娟, 章志国, 李琳, 陈蓓丽. TUBB8基因c.154-156del杂合变异致卵母细胞成熟阻滞一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 17-19. |
[7] | 李彩华, 郭培培, 姜小花, 方有燕, 周平, 魏兆莲. 卵泡期高孕激素状态下促排卵方案的应用进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 68-73. |
[8] | 张宇杰, 王文成, 张宁. GDF-9和BMP-15在PCOS卵泡发育及胰岛素抵抗中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 487-491. |
[9] | 向春蓉, 邓志敏, 代芳芳, 程艳香. 间充质干细胞及其外泌体治疗早发性卵巢功能不全的临床研究及其进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 492-497. |
[10] | 叶明珠, 郑洁, 李杰芃, 许莉欣. 医源性卵巢储备功能减退患者的卵母细胞冷冻生育力保存应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 498-502. |
[11] | 牛国燕, 熊正方. 经阴道超声引导下穿刺取卵术镇痛方式的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 507-512. |
[12] | 陈寅, 王菁, 冒韵东. 子宫内膜异位症合并不孕患者的控制性卵巢刺激方案研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 398-402. |
[13] | 柳絮, 杨爱军, 李泽武, 石城, 刘利君, 孔潇丽, 王靖雯. 富血小板血浆改善卵巢储备功能的相关机制[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 329-333. |
[14] | 陈楸妍, 鲁南, 刘嘉茵. 生长激素预处理在前次IVF/ICSI失败非DOR患者中的临床应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 184-188. |
[15] | 李延, 胡方方, 陈欢欢, 张磊, 张翠莲, 梁琳琳. 窦前卵泡体外三维培养系统研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 221-225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||