国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (3): 240-244.doi: 10.12280/gjszjk.20220558
收稿日期:
2022-11-28
出版日期:
2023-05-15
发布日期:
2023-05-18
通讯作者:
侯海燕
E-mail:houhy2012@hotmail.com
YANG Zhi-juan, YAO Ting, HOU Hai-yan()
Received:
2022-11-28
Published:
2023-05-15
Online:
2023-05-18
Contact:
HOU Hai-yan
E-mail:houhy2012@hotmail.com
摘要:
线粒体在决定卵母细胞发育能力和卵巢功能方面起重要作用。线粒体自噬是细胞选择性地清除多余或受损的线粒体,与维持细胞内线粒体稳态及细胞存活相关;但自噬被抑制或者被过度激活都可能影响细胞功能和细胞存活。当暴露于不良环境时,卵母细胞线粒体功能受损,诱发过量的线粒体自噬,导致卵母细胞质量下降。排卵后卵母细胞老化,氧化应激致线粒体损伤;应用抗氧化剂可以诱导线粒体自噬以清除受损的线粒体,降低氧化应激,改善卵母细胞的发育潜能。综述卵母细胞线粒体自噬与卵巢功能的关系,以及不良环境刺激和抗氧化剂对卵母细胞线粒体自噬的影响,为抗氧化剂应用于卵巢储备功能下降患者提高卵母细胞质量提供了理论依据。
杨志娟, 姚婷, 侯海燕. 线粒体自噬与卵巢功能[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 240-244.
YANG Zhi-juan, YAO Ting, HOU Hai-yan. Mitophagy and Ovarian Function[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 240-244.
[1] |
Iljas JD, Homer HA. Sirt3 is dispensable for oocyte quality and female fertility in lean and obese mice[J]. FASEB J, 2020, 34(5):6641-6653. doi: 10.1096/fj.202000153R.
doi: 10.1096/fj.202000153R pmid: 32212196 |
[2] |
Gan B. Mitochondrial regulation of ferroptosis[J]. J Cell Biol, 2021, 220(9):e202105043. doi: 10.1083/jcb.202105043.
doi: 10.1083/jcb.202105043 |
[3] |
Fan M, Zhang J, Tsai CW, et al. Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex[J]. Nature, 2020, 582(7810):129-133. doi: 10.1038/s41586-020-2309-6.
doi: 10.1038/s41586-020-2309-6 |
[4] |
Bahat A, MacVicar T, Langer T. Metabolism and Innate Immunity Meet at the Mitochondria[J]. Front Cell Dev Biol, 2021, 9:720490. doi: 10.3389/fcell.2021.720490.
doi: 10.3389/fcell.2021.720490 |
[5] |
Adebayo M, Singh S, Singh AP, et al. Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis[J]. FASEB J, 2021, 35(6):e21620. doi: 10.1096/fj.202100067R.
doi: 10.1096/fj.202100067R |
[6] |
Popov LD. Mitochondrial biogenesis: An update[J]. J Cell Mol Med, 2020, 24(9):4892-4899. doi: 10.1111/jcmm.15194.
doi: 10.1111/jcmm.15194 URL |
[7] |
Labarta E, de Los Santos MJ, Escribá MJ, et al. Mitochondria as a tool for oocyte rejuvenation[J]. Fertil Steril, 2019, 111(2):219-226. doi: 10.1016/j.fertnstert.2018.10.036.
doi: S0015-0282(18)32162-9 pmid: 30611551 |
[8] |
Das M, Sauceda C, Webster N. Mitochondrial Dysfunction in Obesity and Reproduction[J]. Endocrinology, 2021, 162(1):bqaa158. doi: 10.1210/endocr/bqaa158.
doi: 10.1210/endocr/bqaa158 |
[9] |
Chiang JL, Shukla P, Pagidas K, et al. Mitochondria in Ovarian Aging and Reproductive Longevity[J]. Ageing Res Rev, 2020, 63:101168. doi: 10.1016/j.arr.2020.101168.
doi: 10.1016/j.arr.2020.101168 |
[10] |
Wang L, Tang J, Wang L, et al. Oxidative stress in oocyte aging and female reproduction[J]. J Cell Physiol, 2021, 236(12):7966-7983. doi: 10.1002/jcp.30468.
doi: 10.1002/jcp.30468 pmid: 34121193 |
[11] |
Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1):3-5. doi: 10.1089/rej.2005.8.3.
doi: 10.1089/rej.2005.8.3 URL |
[12] |
Montava-Garriga L, Ganley IG. Outstanding Questions in Mitophagy: What We Do and Do Not Know[J]. J Mol Biol, 2020, 432(1):206-230. doi: 10.1016/j.jmb.2019.06.032.
doi: S0022-2836(19)30429-2 pmid: 31299243 |
[13] |
Ma K, Chen G, Li W, et al. Mitophagy, Mitochondrial Homeostasis, and Cell Fate[J]. Front Cell Dev Biol, 2020, 8:467. doi: 10.3389/fcell.2020.00467.
doi: 10.3389/fcell.2020.00467 pmid: 32671064 |
[14] |
Gao A, Jiang J, Xie F, et al. Bnip3 in mitophagy: Novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction[J]. Clin Chim Acta, 2020, 506:72-83. doi: 10.1016/j.cca.2020.02.024.
doi: S0009-8981(20)30090-5 pmid: 32092316 |
[15] |
Yoo SM, Yamashita SI, Kim H, et al. FKBP8 LIRL-dependent mitochondrial fragmentation facilitates mitophagy under stress conditions[J]. FASEB J, 2020, 34(2):2944-2957. doi: 10.1096/fj.201901735R.
doi: 10.1096/fj.201901735R URL |
[16] |
Zhang Y, Yao Y, Qiu X, et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing[J]. Nat Immunol, 2019, 20(4):433-446. doi: 10.1038/s41590-019-0324-2.
doi: 10.1038/s41590-019-0324-2 pmid: 30804553 |
[17] |
Yadav PK, Tiwari M, Gupta A, et al. Germ cell depletion from mammalian ovary: possible involvement of apoptosis and autophagy[J]. J Biomed Sci, 2018, 25(1):36. doi: 10.1186/s12929-018-0438-0.
doi: 10.1186/s12929-018-0438-0 pmid: 29681242 |
[18] |
Poulton J, Marchington DR. Segregation of mitochondrial DNA (mtDNA) in human oocytes and in animal models of mtDNA disease: clinical implications[J]. Reproduction, 2002, 123(6):751-755. doi: 10.1530/rep.0.1230751.
doi: 10.1530/rep.0.1230751 pmid: 12052229 |
[19] |
Lamas-Toranzo I, Pericuesta E, Bermejo-Álvarez P. Mitochondrial and metabolic adjustments during the final phase of follicular development prior to IVM of bovine oocytes[J]. Theriogenology, 2018, 119:156-162. doi: 10.1016/j.theriogenology.2018.07.007.
doi: S0093-691X(18)30466-7 pmid: 30015144 |
[20] |
Kim KH, Kim EY, Ko JJ, et al. Gas6 is a reciprocal regulator of mitophagy during mammalian oocyte maturation[J]. Sci Rep, 2019, 9(1):10343. doi: 10.1038/s41598-019-46459-3.
doi: 10.1038/s41598-019-46459-3 |
[21] |
Boudoures AL, Saben J, Drury A, et al. Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy[J]. Dev Biol, 2017, 426(1):126-138. doi: 10.1016/j.ydbio.2017.04.005.
doi: S0012-1606(16)30811-9 pmid: 28438607 |
[22] |
Van Blerkom J, Davis P, Mathwig V, et al. Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos[J]. Hum Reprod, 2002, 17(2):393-406. doi: 10.1093/humrep/17.2.393.
doi: 10.1093/humrep/17.2.393 pmid: 11821285 |
[23] |
Shen Q, Liu Y, Li H, et al. Effect of mitophagy in oocytes and granulosa cells on oocyte quality?[J]. Biol Reprod, 2021, 104(2):294-304. doi: 10.1093/biolre/ioaa194.
doi: 10.1093/biolre/ioaa194 URL |
[24] |
Nishigaki A, Tsubokura H, Tsuzuki-Nakao T, et al. Hypoxia: Role of SIRT1 and the protective effect of resveratrol in ovarian function[J]. Reprod Med Biol, 2022, 21(1):e12428. doi: 10.1002/rmb2.12428.
doi: 10.1002/rmb2.12428 |
[25] |
Yi S, Zheng B, Zhu Y, et al. Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS[J]. Am J Physiol Endocrinol Metab, 2020, 319(1):E91-E101. doi: 10.1152/ajpendo.00006.2020.
doi: 10.1152/ajpendo.00006.2020 URL |
[26] |
Ito J, Shirasuna K, Kuwayama T, et al. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes[J]. Cryobiology, 2020, 93:37-43. doi: 10.1016/j.cryobiol.2020.02.014.
doi: S0011-2240(19)30646-7 pmid: 32171796 |
[27] |
Sugiyama M, Kawahara-Miki R, Kawana H, et al. Resveratrol-induced mitochondrial synthesis and autophagy in oocytes derived from early antral follicles of aged cows[J]. J Reprod Dev, 2015, 61(4):251-259. doi: 10.1262/jrd.2015-001.
doi: 10.1262/jrd.2015-001 URL |
[28] |
Zhou J, Xue Z, He HN, et al. Resveratrol delays postovulatory aging of mouse oocytes through activating mitophagy[J]. Aging (Albany NY), 2019, 11(23):11504-11519. doi: 10.18632/aging.102551.
doi: 10.18632/aging.102551 |
[29] |
He C, Lu S, Wang XZ, et al. FOXO3a protects glioma cells against temozolomide-induced DNA double strand breaks via promotion of BNIP3-mediated mitophagy[J]. Acta Pharmacol Sin, 2021, 42(8):1324-1337. doi: 10.1038/s41401-021-00663-y.
doi: 10.1038/s41401-021-00663-y pmid: 33879840 |
[30] |
Xu J, Sun L, He M, et al. Resveratrol Protects against Zearalenone-Induced Mitochondrial Defects during Porcine Oocyte Maturation via PINK1/Parkin-Mediated Mitophagy[J]. Toxins (Basel), 2022, 14(9):641. doi: 10.3390/toxins14090641.
doi: 10.3390/toxins14090641 URL |
[31] |
López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, et al. Is coenzyme Q a key factor in aging?[J]. Mech Ageing Dev, 2010, 131(4):225-235. doi: 10.1016/j.mad.2010.02.003.
doi: 10.1016/j.mad.2010.02.003 pmid: 20193705 |
[32] |
Tian G, Sawashita J, Kubo H, et al. Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice[J]. Antioxid Redox Signal, 2014, 20(16):2606-2620. doi: 10.1089/ars.2013.5406.
doi: 10.1089/ars.2013.5406 URL |
[33] |
Niu YJ, Zhou W, Nie ZW, et al. Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs[J]. Aging (Albany NY), 2020, 12(2):1256-1271. doi: 10.18632/aging.102681.
doi: 10.18632/aging.102681 |
[34] |
王蕾, 马欣原, 冯欣, 等. 辅酶Q10片联合雌二醇片/雌二醇地屈孕酮片治疗早发性卵巢功能不全所致不孕症的临床研究[J]. 药物评价研究, 2022, 45(3):538-543. doi: 10.7501/j.issn.1674-6376.2022.03.020.
doi: 10.7501/j.issn.1674-6376.2022.03.020 |
[35] |
Jia Z, Wang H, Feng Z, et al. Fluorene-9-bisphenol exposure induces cytotoxicity in mouse oocytes and causes ovarian damage[J]. Ecotoxicol Environ Saf, 2019, 180:168-178. doi: 10.1016/j.ecoenv.2019.05.019.
doi: 10.1016/j.ecoenv.2019.05.019 URL |
[36] |
Lemasters JJ. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy(Type 3)[J]. Redox Biol, 2014, 2:749-754. doi: 10.1016/j.redox.2014.06.004.
doi: 10.1016/j.redox.2014.06.004 pmid: 25009776 |
[37] |
Brayboy LM, Clark H, Knapik LO, et al. Nitrogen mustard exposure perturbs oocyte mitochondrial physiology and alters reproductive outcomes[J]. Reprod Toxicol, 2018, 82:80-87. doi: 10.1016/j.reprotox.2018.10.002.
doi: S0890-6238(18)30194-1 pmid: 30308227 |
[38] |
Lieber T, Jeedigunta SP, Palozzi JM, et al. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline[J]. Nature, 2019, 570(7761):380-384. doi: 10.1038/s41586-019-1213-4.
doi: 10.1038/s41586-019-1213-4 |
[39] |
Bohr VA. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells[J]. Free Radic Biol Med, 2002, 32(9):804-812. doi: 10.1016/s0891-5849(02)00787-6.
doi: 10.1016/s0891-5849(02)00787-6 URL |
[40] |
Zhang Z, Hu Y, Guo J, et al. Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice[J]. Nat Commun, 2017, 8:14585. doi: 10.1038/ncomms14585.
doi: 10.1038/ncomms14585 pmid: 28248286 |
[41] |
Jiao XF, Liang QM, Wu D, et al. Effects of Acute Fluorene-9-Bisphenol Exposure on Mouse Oocyte in vitro Maturation and Its Possible Mechanisms[J]. Environ Mol Mutagen, 2019, 60(3):243-253. doi: 10.1002/em.22258.
doi: 10.1002/em.22258 URL |
[1] | 江楠, 赵晓丽, 栾祖乾, 黄志云, 夏天. 高龄女性卵母细胞内氧化应激与非整倍体相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 415-419. |
[2] | 王冬雪, 包莉莉, 刘珊, 杨波. 改良灵活拮抗剂方案对卵巢功能正常女性COH结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 185-189. |
[3] | 曹媛媛, 贾赞慧, 张春苗. ZP1基因突变在空卵泡综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 127-131. |
[4] | 闻星星, 柴梦晗, 杨倪, 邹慧娟, 章志国, 李琳, 陈蓓丽. TUBB8基因c.154-156del杂合变异致卵母细胞成熟阻滞一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 17-19. |
[5] | 张宇杰, 王文成, 张宁. GDF-9和BMP-15在PCOS卵泡发育及胰岛素抵抗中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 487-491. |
[6] | 向春蓉, 邓志敏, 代芳芳, 程艳香. 间充质干细胞及其外泌体治疗早发性卵巢功能不全的临床研究及其进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 492-497. |
[7] | 叶明珠, 郑洁, 李杰芃, 许莉欣. 医源性卵巢储备功能减退患者的卵母细胞冷冻生育力保存应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 498-502. |
[8] | 牛国燕, 熊正方. 经阴道超声引导下穿刺取卵术镇痛方式的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 507-512. |
[9] | 柳絮, 杨爱军, 李泽武, 石城, 刘利君, 孔潇丽, 王靖雯. 富血小板血浆改善卵巢储备功能的相关机制[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 329-333. |
[10] | 陈楸妍, 鲁南, 刘嘉茵. 生长激素预处理在前次IVF/ICSI失败非DOR患者中的临床应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 184-188. |
[11] | 李延, 胡方方, 陈欢欢, 张磊, 张翠莲, 梁琳琳. 窦前卵泡体外三维培养系统研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 221-225. |
[12] | 朱文彬, 许婧余, 马瑞红, 夏天, 栾祖乾. 脑源性神经营养因子与女性生殖的相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 140-144. |
[13] | 田辉, 张宇, 赵晓曦. PIWI蛋白相互作用RNA与生殖功能的关系[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 150-155. |
[14] | 崔毓桂, 贾洪燕, 施陈楠, 严正杰, 刘嘉茵, 马翔. 卵母细胞线粒体移植及其伦理问题[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 89-94. |
[15] | 赵海君, 张皙卉, 陈静, 卢静, 张洪峰, 常文亮. 三种促排卵方案在高龄合并卵巢储备功能减退不孕症中的应用比较[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 13-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||