国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (3): 221-225.doi: 10.12280/gjszjk.20220455
收稿日期:
2022-09-21
出版日期:
2023-05-15
发布日期:
2023-05-18
通讯作者:
梁琳琳
E-mail:21469532@qq.com
基金资助:
LI Yan, HU Fang-fang, CHEN Huan-huan, ZHANG Lei, ZHANG Cui-lian, LIANG Lin-lin()
Received:
2022-09-21
Published:
2023-05-15
Online:
2023-05-18
Contact:
LIANG Lin-lin
E-mail:21469532@qq.com
摘要:
卵泡体外培养对癌症治疗导致的卵巢功能下降患者的生育力保护有重要意义,也是研究卵泡发育和卵子发生的一种有效方法。卵泡体外培养需要建立能够较好模拟体内生长环境的体外培养系统,目前体外卵泡培养系统大致分为二维培养系统和三维培养系统。卵泡二维培养系统已在啮齿动物模型中成功建立。由于三维培养可以满足卵泡生长所需的空间结构,其培养效果优于二维培养,广泛用于各种动物模型卵泡的培养。三维培养系统可分为支架形式培养系统与无支架形式培养系统,有无支架以及支架材料的选择对卵泡体外发育有直接影响。支架材料根据来源可分为天然材料和合成材料,天然材料如海藻酸盐、胶原蛋白和纤维蛋白等在生物相容性上优于合成材料,但合成材料的可调节性使其具有良好前景。综述三维培养系统选择对卵泡体外发育的影响。
李延, 胡方方, 陈欢欢, 张磊, 张翠莲, 梁琳琳. 窦前卵泡体外三维培养系统研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 221-225.
LI Yan, HU Fang-fang, CHEN Huan-huan, ZHANG Lei, ZHANG Cui-lian, LIANG Lin-lin. Research Progress of In Vitro Three-Dimensional Culture System of Preantral Follicles[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 221-225.
[1] |
黄少凤, 牛向丽, 林忠, 等. 卵巢皮质玻璃化冷冻保存及移植的损伤因素[J]. 国际生殖健康/计划生育杂志, 2022, 41(4):308-312. doi: 10.12280/gjszjk.20220115.
doi: 10.12280/gjszjk.20220115 |
[2] |
马聪, 邹慧娟, 王建业, 等. 自体卵巢组织冷冻在女性肿瘤患者生育力保存中的应用[J]. 生殖医学杂志, 2020, 29(5):663-667. doi: 10.3969/j.issn.1004-3845.2020.05.017.
doi: 10.3969/j.issn.1004-3845.2020.05.017 |
[3] |
Guerreiro DD, Mbemya GT, Bruno JB, et al. In vitro culture systems as an alternative for female reproductive toxicology studies[J]. Zygote, 2019, 27(2):55-63. doi: 10.1017/S0967199419000042.
doi: 10.1017/S0967199419000042 pmid: 30871647 |
[4] |
Eppig JJ, O′Brien MJ. Development in vitro of mouse oocytes from primordial follicles[J]. Biol Reprod, 1996, 54(1):197-207. doi: 10.1095/biolreprod54.1.197.
doi: 10.1095/biolreprod54.1.197 pmid: 8838017 |
[5] |
Simon LE, Kumar TR, Duncan FE. In vitro ovarian follicle growth: a comprehensive analysis of key protocol variables?[J]. Biol Reprod, 2020, 103(3):455-470. doi: 10.1093/biolre/ioaa073.
doi: 10.1093/biolre/ioaa073 pmid: 32406908 |
[6] |
Pangas SA, Saudye H, Shea LD, et al. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes[J]. Tissue Eng, 2003, 9(5):1013-1021. doi: 10.1089/107632703322495655.
doi: 10.1089/107632703322495655 pmid: 14633385 |
[7] |
Correia H, Lima LF, Sousa F, et al. Activation of goat primordial follicles in vitro: Influence of alginate and ovarian tissue[J]. Reprod Domest Anim, 2020, 55(1):105-109. doi: 10.1111/rda.13582.
doi: 10.1111/rda.13582 pmid: 31661715 |
[8] |
Jalili C, Khani Hemmatabadi F, Bakhtiyari M, et al. Effects of Three-Dimensional Sodium Alginate Scaffold on Maturation and Developmental Gene Expressions in Fresh and Vitrified Preantral Follicles of Mice[J]. Int J Fertil Steril, 2021, 15(3):167-177. doi: 10.22074/IJFS.2020.134609.
doi: 10.22074/IJFS.2020.134609 pmid: 34155863 |
[9] |
Jamalzaei P, Rezazadeh Valojerdi M, Montazeri L, et al. Applicability of Hyaluronic Acid-Alginate Hydrogel and Ovarian Cells for In Vitro Development of Mouse Preantral Follicles[J]. Cell J, 2020, 22(Suppl 1):49-60. doi: 10.22074/cellj.2020.6925.
doi: 10.22074/cellj.2020.6925 pmid: 32779433 |
[10] |
Converse A, Zaniker EJ, Amargant F, et al. Recapitulating folliculogenesis and oogenesis outside the body: encapsulated in vitro follicle growth?[J]. Biol Reprod, 2023, 108(1):5-22. doi: 10.1093/biolre/ioac176.
doi: 10.1093/biolre/ioac176 URL |
[11] |
Brunette MA, Kinnear HM, Hashim PH, et al. Human Ovarian Follicles Xenografted in Immunoisolating Capsules Survive Long Term Implantation in Mice[J]. Front Endocrinol (Lausanne), 2022, 13:886678. doi: 10.3389/fendo.2022.886678.
doi: 10.3389/fendo.2022.886678 |
[12] |
Peng X, Cheng C, Zhang X, et al. Design and Application Strategies of Natural Polymer Biomaterials in Artificial Ovaries[J]. Ann Biomed Eng, 2023, 51(3):461-478. doi: 10.1007/s10439-022-03125-6.
doi: 10.1007/s10439-022-03125-6 |
[13] |
Jalili C, Khani Hemmatabadi F, Mansouri K, et al. Effects of sodium alginate capsules as 3D scaffolds on hormones and genes expression in preantral follicles of mice compared to 2D medium: An experimental study[J]. Int J Reprod Biomed, 2020, 18(7):517-530. doi: 10.18502/ijrm.v13i7.7369.
doi: 10.18502/ijrm.v13i7.7369 pmid: 32803116 |
[14] |
Ouni E, Peaucelle A, Haas KT, et al. A blueprint of the topology and mechanics of the human ovary for next-generation bioengineering and diagnosis[J]. Nat Commun, 2021, 12(1):5603. doi: 10.1038/s41467-021-25934-4.
doi: 10.1038/s41467-021-25934-4 pmid: 34556652 |
[15] |
Choi JK, Agarwal P, Huang H, et al. The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue[J]. Biomaterials, 2014, 35(19):5122-5128. doi: 10.1016/j.biomaterials.2014.03.028.
doi: 10.1016/j.biomaterials.2014.03.028 pmid: 24702961 |
[16] |
Xiang D, Liu Y, Zhou E, et al. Advances in the applications of polymer biomaterials for in vitro follicle culture[J]. Biomed Pharmacother, 2021, 140:111422. doi: 10.1016/j.biopha.2021.111422.
doi: 10.1016/j.biopha.2021.111422 |
[17] |
Chiti MC, Dolmans MM, Mortiaux L, et al. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity[J]. J Assist Reprod Genet, 2018, 35(1):41-48. doi: 10.1007/s10815-017-1091-3.
doi: 10.1007/s10815-017-1091-3 URL |
[18] |
Wu M, Guo Y, Wei S, et al. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging[J]. J Nanobiotechnology, 2022, 20(1):374. doi: 10.1186/s12951-022-01566-8.
doi: 10.1186/s12951-022-01566-8 |
[19] |
Joo S, Oh SH, Sittadjody S, et al. The effect of collagen hydrogel on 3D culture of ovarian follicles[J]. Biomed Mater, 2016, 11(6):065009. doi: 10.1088/1748-6041/11/6/065009.
doi: 10.1088/1748-6041/11/6/065009 |
[20] |
Alaee S, Asadollahpour R, Hosseinzadeh Colagar A, et al. The decellularized ovary as a potential scaffold for maturation of preantral ovarian follicles of prepubertal mice[J]. Syst Biol Reprod Med, 2021, 67(6):413-427. doi: 10.1080/19396368.2021.1968542.
doi: 10.1080/19396368.2021.1968542 URL |
[21] |
Nikniaz H, Zandieh Z, Nouri M, et al. Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro[J]. BMC Biotechnol, 2021, 21(1):8. doi: 10.1186/s12896-020-00658-3.
doi: 10.1186/s12896-020-00658-3 pmid: 33472624 |
[22] |
Liu MN, Zhang K, Xu TM. The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency[J]. Hum Fertil (Camb), 2021, 24(5):325-332. doi: 10.1080/14647273.2019.1672107.
doi: 10.1080/14647273.2019.1672107 URL |
[23] |
Gargus ES, Rogers HB, McKinnon KE, et al. Engineered reproductive tissues[J]. Nat Biomed Eng, 2020, 4(4):381-393. doi: 10.1038/s41551-020-0525-x.
doi: 10.1038/s41551-020-0525-x pmid: 32251392 |
[24] |
Paltanea G, Manescu Paltanea V, Antoniac I, et al. A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology[J]. Int J Mol Sci, 2023, 24(5):4312. doi: 10.3390/ijms24054312.
doi: 10.3390/ijms24054312 URL |
[25] |
Matsushige C, Xu X, Miyagi M, et al. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice[J]. Theriogenology, 2022, 183:120-131. doi: 10.1016/j.theriogenology.2022.02.009.
doi: 10.1016/j.theriogenology.2022.02.009 pmid: 35247849 |
[26] |
Higuchi CM, Maeda Y, Horiuchi T, et al. A Simplified Method for Three-Dimensional (3-D) Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice[J]. PLoS One, 2015, 10(11):e0143114. doi: 10.1371/journal.pone.0143114.
doi: 10.1371/journal.pone.0143114 |
[27] |
Zhu L, Yuhan J, Yu H, et al. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid′s Microenvironment[J]. Small, 2023:e2207752. doi: 10.1002/smll.202207752.
doi: 10.1002/smll.202207752 |
[28] |
Hassani F, Ebrahimi B, Moini A, et al. Chitosan Hydrogel Supports Integrity of Ovarian Follicles during In Vitro Culture: A Preliminary of A Novel Biomaterial for Three Dimensional Culture of Ovarian Follicles[J]. Cell J, 2020, 21(4):479-493. doi: 10.22074/cellj.2020.6393.
doi: 10.22074/cellj.2020.6393 pmid: 31376330 |
[29] |
Liu X, Wu K, Gao L, et al. Biomaterial strategies for the application of reproductive tissue engineering[J]. Bioact Mater, 2022, 14:86-96. doi: 10.1016/j.bioactmat.2021.11.023.
doi: 10.1016/j.bioactmat.2021.11.023 pmid: 35310354 |
[30] |
Kim J, Perez AS, Claflin J, et al. Synthetic hydrogel supports the function and regeneration of artificial ovarian tissue in mice[J]. NPJ Regen Med, 2016, 1:16010. doi: 10.1038/npjregenmed.2016.10.
doi: 10.1038/npjregenmed.2016.10 |
[31] |
Ren H, Zhang Y, Zhang Y, et al. Optimized study of an in vitro 3D culture of preantral follicles in mice[J]. J Vet Sci, 2023, 24(1):e4. doi: 10.4142/jvs.22223.
doi: 10.4142/jvs.22223 URL |
[32] |
Reed CR, Han L, Andrady A, et al. Composite tissue engineering on polycaprolactone nanofiber scaffolds[J]. Ann Plast Surg, 2009, 62(5):505-512. doi: 10.1097/SAP.0b013e31818e48bf.
doi: 10.1097/SAP.0b013e31818e48bf URL |
[33] |
Liverani L, Raffel N, Fattahi A, et al. Electrospun patterned porous scaffolds for the support of ovarian follicles growth: a feasibility study[J]. Sci Rep, 2019, 9(1):1150. doi: 10.1038/s41598-018-37640-1.
doi: 10.1038/s41598-018-37640-1 pmid: 30718584 |
[34] |
Nation A, Selwood L. The production of mature oocytes from adult ovaries following primary follicle culture in a marsupial[J]. Reproduction, 2009, 138(2):247-255. doi: 10.1530/REP-09-0028.
doi: 10.1530/REP-09-0028 pmid: 19494049 |
[35] |
Xu J, Lawson MS, Mitalipov SM, et al. Stage-specific modulation of antimüllerian hormone promotes primate follicular development and oocyte maturation in the matrix-free three-dimensional culture[J]. Fertil Steril, 2018, 110(6):1162-1172. doi: 10.1016/j.fertnstert.2018.07.006.
doi: S0015-0282(18)30571-5 pmid: 30396561 |
[36] |
Xu F, Lawson MS, Bean Y, et al. Matrix-free 3D culture supports human follicular development from the unilaminar to the antral stage in vitro yielding morphologically normal metaphase II oocytes[J]. Hum Reprod, 2021, 36(5):1326-1338. doi: 10.1093/humrep/deab003.
doi: 10.1093/humrep/deab003 URL |
[37] |
Xiao S, Zhang J, Romero MM, et al. In vitro follicle growth supports human oocyte meiotic maturation[J]. Sci Rep, 2015, 5:17323. doi: 10.1038/srep17323.
doi: 10.1038/srep17323 pmid: 26612176 |
[38] |
McLaughlin M, Albertini DF, Wallace W, et al. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system[J]. Mol Hum Reprod, 2018, 24(3):135-142. doi: 10.1093/molehr/gay002.
doi: 10.1093/molehr/gay002 pmid: 29390119 |
[1] | 肖楠, 李永程, 姚义鸣, 孙红文, 姚汝强, 陈泳君, 殷宇辰, 罗海宁. 卵巢微环境内邻苯二甲酸酯暴露与炎性因子水平的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 353-360. |
[2] | 江楠, 赵晓丽, 栾祖乾, 黄志云, 夏天. 高龄女性卵母细胞内氧化应激与非整倍体相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 415-419. |
[3] | 高朝阳, 章宁晴, 陈琼华, 吴荣锋. 环状RNA在子宫内膜异位症不孕患者卵泡颗粒细胞中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 243-248. |
[4] | 曹媛媛, 贾赞慧, 张春苗. ZP1基因突变在空卵泡综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 127-131. |
[5] | 甄佳, 赵紫渊, 王子璐, 师伟, 徐丽. 多囊卵巢综合征病理机制中的颗粒细胞自噬[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 150-154. |
[6] | 吴静, 刘聪, 谢青贞. 微塑料暴露对雌性及其子代健康的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 155-158. |
[7] | 闻星星, 柴梦晗, 杨倪, 邹慧娟, 章志国, 李琳, 陈蓓丽. TUBB8基因c.154-156del杂合变异致卵母细胞成熟阻滞一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 17-19. |
[8] | 李文雅, 张巧利, 杨晓葵. 内质网应激在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 53-57. |
[9] | 李彩华, 郭培培, 姜小花, 方有燕, 周平, 魏兆莲. 卵泡期高孕激素状态下促排卵方案的应用进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 68-73. |
[10] | 张宇杰, 王文成, 张宁. GDF-9和BMP-15在PCOS卵泡发育及胰岛素抵抗中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 487-491. |
[11] | 叶明珠, 郑洁, 李杰芃, 许莉欣. 医源性卵巢储备功能减退患者的卵母细胞冷冻生育力保存应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 498-502. |
[12] | 牛国燕, 熊正方. 经阴道超声引导下穿刺取卵术镇痛方式的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 507-512. |
[13] | 刘洪江, 姜小花, 魏兆莲. 间充质干细胞及其联合生物材料支架在宫腔粘连治疗中的应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 424-430. |
[14] | 邓美香, 石一柱, 冯兰青. 内分泌干扰物对女性生育力和辅助生殖技术结局的影响[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 304-309. |
[15] | 柳絮, 杨爱军, 李泽武, 石城, 刘利君, 孔潇丽, 王靖雯. 富血小板血浆改善卵巢储备功能的相关机制[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 329-333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||