国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (4): 317-322.doi: 10.12280/gjszjk.20230028
收稿日期:
2023-02-01
出版日期:
2023-07-15
发布日期:
2023-07-26
通讯作者:
王玲
E-mail:szyxzx2020@163.com
基金资助:
WANG Tian, MO Shao-kang, HUANG Bing-xue, WEI Lu-xiao, WANG Ling()
Received:
2023-02-01
Published:
2023-07-15
Online:
2023-07-26
Contact:
WANG Ling
E-mail:szyxzx2020@163.com
摘要:
活性氧(reactive oxygen species,ROS)在生理状态下作为第二信使发挥细胞信号转导作用,当机体受到缺氧、炎症反应等刺激时,体内ROS水平增加,诱导体内发生氧化应激(oxidative stress)反应。适量的ROS促进卵母细胞的第一次减数分裂,并诱导非优势卵泡进入细胞凋亡。研究表明,氧化应激与多囊卵巢综合征(polycystic ovary syndrome,PCOS)患者的高雄激素血症、胰岛素抵抗、排卵障碍和线粒体损伤等有密切联系;应用抗氧化剂控制氧化应激可能成为早发性卵巢功能不全(premature ovarian insufficiency,POI)的辅助治疗方式。氧化应激抑制DNA甲基化酶引起DNA低甲基化、引起微小RNA及相关活性因子的表达异常,参与卵巢肿瘤细胞增殖和耐药性发生。综述氧化应激在PCOS、POI和卵巢肿瘤等卵巢相关生殖障碍疾病中的作用,展望抗氧化应激治疗的可能应用前景。
王甜, 莫少康, 黄冰雪, 魏璐晓, 王玲. 氧化应激在卵巢相关生殖障碍疾病中的作用[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 317-322.
WANG Tian, MO Shao-kang, HUANG Bing-xue, WEI Lu-xiao, WANG Ling. Oxidative Stress in Ovary-Related Reproductive Disorders[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 317-322.
[1] |
Chainy G, Sahoo DK. Hormones and oxidative stress: an overview[J]. Free Radic Res, 2020, 54(1):1-26. doi: 10.1080/10715762.2019.1702656.
doi: 10.1080/10715762.2019.1702656 URL |
[2] |
Sies H. Oxidative stress: a concept in redox biology and medicine[J]. Redox Biol, 2015, 4:180-183. doi: 10.1016/j.redox.2015.01.002.
doi: 10.1016/j.redox.2015.01.002 pmid: 25588755 |
[3] |
Qi JH, Dong FX. The relevant targets of anti-oxidative stress: a review[J]. J Drug Target, 2021, 29(7):677-686. doi: 10.1080/1061186X.2020.1870987.
doi: 10.1080/1061186X.2020.1870987 URL |
[4] |
Aitken RJ, Bromfield EG, Gibb Z. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: The impact of oxidative stress on reproduction: a focus on gametogenesis and fertilization[J]. Reproduction, 2022, 164(6):F79-F94. doi: 10.1530/REP-22-0126.
doi: 10.1530/REP-22-0126 URL |
[5] |
Agarwal A, Aponte-Mellado A, Premkumar BJ, et al. The effects of oxidative stress on female reproduction: a review[J]. Reprod Biol Endocrinol, 2012, 10:49. doi: 10.1186/1477-7827-10-49.
doi: 10.1186/1477-7827-10-49 URL |
[6] |
Lu J, Wang Z, Cao J, et al. A novel and compact review on the role of oxidative stress in female reproduction[J]. Reprod Biol Endocrinol, 2018, 16(1):80. doi: 10.1186/s12958-018-0391-5.
doi: 10.1186/s12958-018-0391-5 |
[7] |
Lockwood CJ. Mechanisms of normal and abnormal endometrial bleeding[J]. Menopause, 2011, 18(4):408-411. doi: 10.1097/GME.0b013e31820bf288.
doi: 10.1097/GME.0b013e31820bf288 pmid: 21499503 |
[8] |
Belenkaia LV, Lazareva LM, Walker W, et al. Criteria, phenotypes and prevalence of polycystic ovary syndrome[J]. Minerva Ginecol, 2019, 71(3):211-223. doi: 10.23736/S0026-4784.19.04404-6.
doi: 10.23736/S0026-4784.19.04404-6 pmid: 31089072 |
[9] |
Sadeghi HM, Adeli I, Calina D, et al. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing[J]. Int J Mol Sci, 2022, 23(2):538. doi: 10.3390/ijms23020583.
doi: 10.3390/ijms23020583 URL |
[10] |
Mohammadi M. Oxidative Stress and Polycystic Ovary Syndrome: A Brief Review[J]. Int J Prev Med, 2019, 10:86. doi: 10.4103/ijpvm.IJPVM_576_17.
doi: 10.4103/ijpvm.IJPVM_576_17 pmid: 31198521 |
[11] |
Sun Y, Li S, Liu H, et al. Oxidative stress promotes hyperandrogenism by reducing sex hormone-binding globulin in polycystic ovary syndrome[J]. Fertil Steril, 2021, 116(6):1641-1650. doi: 10.1016/j.fertnstert.2021.07.1203.
doi: 10.1016/j.fertnstert.2021.07.1203 pmid: 34433519 |
[12] |
Yao Q, Zou X, Liu S, et al. Oxidative Stress as a Contributor to Insulin Resistance in the Skeletal Muscles of Mice with Polycystic Ovary Syndrome[J]. Int J Mol Sci, 2022, 23(19):11384. doi: 10.3390/ijms231911384.
doi: 10.3390/ijms231911384 URL |
[13] |
Hu M, Zhang Y, Guo X, et al. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production[J]. Am J Physiol Endocrinol Metab, 2019, 316(5):E794-E809. doi: 10.1152/ajpendo.00359.2018.
doi: 10.1152/ajpendo.00359.2018 URL |
[14] |
Victor VM, Rovira-Llopis S, Bañuls C, et al. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase[J]. PLoS One, 2016, 11(3):e0151960. doi: 10.1371/journal.pone.0151960.
doi: 10.1371/journal.pone.0151960 URL |
[15] |
Zeng X, Xie YJ, Liu YT, et al. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity[J]. Clin Chim Acta, 2020, 502:214-221. doi: 10.1016/j.cca.2019.11.003.
doi: S0009-8981(19)32118-7 pmid: 31733195 |
[16] |
Püschel GP, Klauder J, Henkel J. Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases[J]. J Clin Med, 2022, 11(15):4358. doi: 10.3390/jcm11154358.
doi: 10.3390/jcm11154358 URL |
[17] |
Uçkan K, Demir H, Turan K, et al. Role of Oxidative Stress in Obese and Nonobese PCOS Patients[J]. Int J Clin Pract, 2022, 2022:4579831. doi: 10.1155/2022/4579831.
doi: 10.1155/2022/4579831 |
[18] |
Snider AP, Wood JR. Obesity induces ovarian inflammation and reduces oocyte quality[J]. Reproduction, 2019, 158(3):R79-R90. doi: 10.1530/REP-18-0583.
doi: 10.1530/REP-18-0583 |
[19] |
Wang F, Han J, Wang X, et al. Roles of HIF-1α/BNIP3 mediated mitophagy in mitochondrial dysfunction of letrozole-induced PCOS rats[J]. J Mol Histol, 2022, 53(5):833-842. doi: 10.1007/s10735-022-10096-4.
doi: 10.1007/s10735-022-10096-4 pmid: 35951252 |
[20] |
Song L, Yu J, Zhang D, et al. Androgen Excess Induced Mitochondrial Abnormality in Ovarian Granulosa Cells in a Rat Model of Polycystic Ovary Syndrome[J]. Front Endocrinol(Lausanne), 2022, 13:789008. doi: 10.3389/fendo.2022.789008.
doi: 10.3389/fendo.2022.789008 |
[21] |
Salahi E, Amidi F, Zahiri Z, et al. The effect of mitochondria-targeted antioxidant Mito Q10 on redox signaling pathway components in PCOS mouse model[J]. Arch Gynecol Obstet, 2022, 305(4):985-994. doi: 10.1007/s00404-021-06230-4.
doi: 10.1007/s00404-021-06230-4 |
[22] |
Olcese JM. Melatonin and Female Reproduction: An Expanding Universe[J]. Front Endocrinol(Lausanne), 2020, 11:85. doi: 10.3389/fendo.2020.00085.
doi: 10.3389/fendo.2020.00085 |
[23] |
Zheng B, Meng J, Zhu Y, et al. Melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS[J]. J Ovarian Res, 2021, 14(1):152. doi: 10.1186/s13048-021-00912-y.
doi: 10.1186/s13048-021-00912-y pmid: 34758863 |
[24] |
Panay N, Anderson RA, Nappi RE, et al. Premature ovarian insufficiency: an International Menopause Society White Paper[J]. Climacteric, 2020, 23(5):426-446. doi: 10.1080/13697137.2020.1804547.
doi: 10.1080/13697137.2020.1804547 pmid: 32896176 |
[25] |
Huhtaniemi I, Hovatta O, La Marca A, et al. Advances in the Molecular Pathophysiology, Genetics, and Treatment of Primary Ovarian Insufficiency[J]. Trends Endocrinol Metab, 2018, 29(6):400-419. doi: 10.1016/j.tem.2018.03.010.
doi: 10.1016/j.tem.2018.03.010 URL |
[26] |
Ishizuka B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI)[J]. Front Endocrinol(Lausanne), 2021, 12:626924. doi: 10.3389/fendo.2021.626924.
doi: 10.3389/fendo.2021.626924 |
[27] |
Liu Y, Ao X, Ding W, et al. Critical role of FOXO3a in carcinogenesis[J]. Mol Cancer, 2018, 17(1):104. doi: 10.1186/s12943-018-0856-3.
doi: 10.1186/s12943-018-0856-3 pmid: 30045773 |
[28] |
马会明, 张永芳, 王蒙蒙, 等. 雌激素对卵巢颗粒细胞雌激素受体-β和转录因子叉头蛋白3表达的影响[J]. 山东大学学报(医学版), 2016, 54(5):50-55. doi: 10.6040/j.issn.1671-7554.0.2015.437.
doi: 10.6040/j.issn.1671-7554.0.2015.437 |
[29] |
He L, Long X, Yu N, et al. Premature Ovarian Insufficiency (POI) Induced by Dynamic Intensity Modulated Radiation Therapy via PI3K-AKT-FOXO3a in Rat Models[J]. Biomed Res Int, 2021, 2021:7273846. doi: 10.1155/2021/7273846.
doi: 10.1155/2021/7273846 |
[30] |
Abogresha NM, Mohammed SS, Hosny MM, et al. Diosmin Mitigates Cyclophosphamide Induced Premature Ovarian Insufficiency in Rat Model[J]. Int J Mol Sci, 2021, 22(6):3044. doi: 10.3390/ijms22063044.
doi: 10.3390/ijms22063044 URL |
[31] |
Zheng S, Ma M, Chen Y, et al. Effects of quercetin on ovarian function and regulation of the ovarian PI3K/Akt/FoxO3a signalling pathway and oxidative stress in a rat model of cyclophosphamide-induced premature ovarian failure[J]. Basic Clin Pharmacol Toxicol, 2022, 130(2):240-253. doi: 10.1111/bcpt.13696.
doi: 10.1111/bcpt.13696 URL |
[32] |
Bozkaya VÖ, Yumusak OH, Ozaksit G, et al. The role of oxidative stress on subclinical atherosclerosis in premature ovarian insufficiency and relationship with carotid intima-media thickness[J]. Gynecol Endocrinol, 2020, 36(8):687-692. doi: 10.1080/09513590.2020.1766439.
doi: 10.1080/09513590.2020.1766439 pmid: 32429709 |
[33] |
Zhou XY, Zhang J, Li Y, et al. Advanced Oxidation Protein Products Induce G1/G0-Phase Arrest in Ovarian Granulosa Cells via the ROS-JNK/p38 MAPK-p21 Pathway in Premature Ovarian Insufficiency[J]. Oxid Med Cell Longev, 2021, 2021:6634718. doi: 10.1155/2021/6634718.
doi: 10.1155/2021/6634718 |
[34] |
Guo L, Liu X, Chen H, et al. Decrease in ovarian reserve through the inhibition of SIRT1-mediated oxidative phosphorylation[J]. Aging(Albany NY), 2022, 14(5):2335-2347. doi: 10.18632/aging.203942.
doi: 10.18632/aging.203942 |
[35] |
Ma L, Li X, Li C, et al. Association of Coenzyme Q10 with Premature Ovarian Insufficiency[J]. Reprod Sci, 2023, 30(5):1548-1554. doi: 10.1007/s43032-022-01136-1.
doi: 10.1007/s43032-022-01136-1 |
[36] |
Feng J, Ma WW, Li HX, et al. Melatonin prevents cyclophosphamide-induced primordial follicle loss by inhibiting ovarian granulosa cell apoptosis and maintaining AMH expression[J]. Front Endocrinol(Lausanne), 2022, 13:895095. doi: 10.3389/fendo.2022.895095.
doi: 10.3389/fendo.2022.895095 |
[37] |
Huang B, Qian C, Ding C, et al. Fetal liver mesenchymal stem cells restore ovarian function in premature ovarian insufficiency by targeting MT1[J]. Stem Cell Res Ther, 2019, 10(1):362. doi: 10.1186/s13287-019-1490-8.
doi: 10.1186/s13287-019-1490-8 pmid: 31783916 |
[38] |
Ding C, Zou Q, Wu Y, et al. EGF released from human placental mesenchymal stem cells improves premature ovarian insufficiency via NRF2/HO-1 activation[J]. Aging(Albany NY), 2020, 12(3):2992-3009. doi: 10.18632/aging.102794.
doi: 10.18632/aging.102794 |
[39] |
Lu X, Bao H, Cui L, et al. hUMSC transplantation restores ovarian function in POI rats by inhibiting autophagy of theca-interstitial cells via the AMPK/mTOR signaling pathway[J]. Stem Cell Res Ther, 2020, 11(1):268. doi: 10.1186/s13287-020-01784-7.
doi: 10.1186/s13287-020-01784-7 pmid: 32620136 |
[40] |
Luo C, Hajkova P, Ecker JR. Dynamic DNA methylation: In the right place at the right time[J]. Science, 2018, 361(6409):1336-1340. doi: 10.1126/science.aat6806.
doi: 10.1126/science.aat6806 pmid: 30262495 |
[41] |
Brozovic A, Duran GE, Wang YC, et al. The miR-200 family differentially regulates sensitivity to paclitaxel and carboplatin in human ovarian carcinoma OVCAR-3 and MES-OV cells[J]. Mol Oncol, 2015, 9(8):1678-1693. doi: 10.1016/j.molonc.2015.04.015.
doi: 10.1016/j.molonc.2015.04.015 pmid: 26025631 |
[42] |
Boac BM, Xiong Y, Marchion DC, et al. Micro-RNAs associated with the evolution of ovarian cancer cisplatin resistance[J]. Gynecol Oncol, 2016, 140(2):259-263. doi: 10.1016/j.ygyno.2015.12.026.
doi: 10.1016/j.ygyno.2015.12.026 pmid: 26731723 |
[43] |
Deng X, Lin N, Fu J, et al. The Nrf2/PGC1α Pathway Regulates Antioxidant and Proteasomal Activity to Alter Cisplatin Sensitivity in Ovarian Cancer[J]. Oxid Med Cell Longev, 2020, 2020:4830418. doi: 10.1155/2020/4830418.
doi: 10.1155/2020/4830418 |
[44] |
Zhao F, Hong X, Li D, et al. Diosmetin induces apoptosis in ovarian cancer cells by activating reactive oxygen species and inhibiting the Nrf2 pathway[J]. Med Oncol, 2021, 38(5):54. doi: 10.1007/s12032-021-01501-1.
doi: 10.1007/s12032-021-01501-1 pmid: 33811596 |
[45] |
Sun C, Han B, Zhai Y, et al. Dihydrotanshinone I inhibits ovarian tumor growth by activating oxidative stress through Keap1-mediated Nrf2 ubiquitination degradation[J]. Free Radic Biol Med, 2022, 180:220-235. doi: 10.1016/j.freeradbiomed.2022.01.015.
doi: 10.1016/j.freeradbiomed.2022.01.015 URL |
[46] |
Li Q, Tan Q, Ma Y, et al. Myricetin Suppresses Ovarian Cancer In Vitro by Activating the p38/Sapla Signaling Pathway and Suppressing Intracellular Oxidative Stress[J]. Front Oncol, 2022, 12:903394. doi: 10.3389/fonc.2022.903394.
doi: 10.3389/fonc.2022.903394 URL |
[1] | 李安琪, 朱梦一, 王宇, 高敬书, 吴效科. 丹参酮在多囊卵巢综合征治疗中的潜在价值及其机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 494-500. |
[2] | 雷瑞祥, 万怡, 李钰滋, 关德凤, 张学红. 昼夜节律紊乱与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 501-505. |
[3] | 乔新月, 陶爱琳, 冯晓玲, 陈璐. 多囊卵巢综合征伴焦虑、抑郁障碍的相关性研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 506-511. |
[4] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[5] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[6] | 高征, 李梦元, 李博, 梁婧翘, 张雅冬, 许昕. 中药复方干预肥胖型多囊卵巢综合征糖脂代谢异常的Meta分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 368-377. |
[7] | 朱海英, 齐丹丹, 孙平平, 孙娜, 栾素娴. 辅助生殖技术助孕后卵巢过度刺激综合征合并卵巢扭转一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 401-405. |
[8] | 江楠, 赵晓丽, 栾祖乾, 黄志云, 夏天. 高龄女性卵母细胞内氧化应激与非整倍体相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 415-419. |
[9] | 李轩昂, 王婷婷, 相珊, 赵帅, 连方. 铁死亡在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 425-429. |
[10] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[11] | 李丹萍, 连方, 相珊. 二甲双胍治疗多囊卵巢综合征的机制研究新进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 343-347. |
[12] | 石百超, 常惠, 王宇, 卢凤娟, 王凯悦, 关木馨, 马良, 吴效科. 肠道菌群在多囊卵巢综合征中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 238-242. |
[13] | 叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137. |
[14] | 代鹤琦, 毛菲, 冯睿芝, 钱云. lncRNA作为ceRNA在多囊卵巢综合征中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 144-149. |
[15] | 甄佳, 赵紫渊, 王子璐, 师伟, 徐丽. 多囊卵巢综合征病理机制中的颗粒细胞自噬[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 150-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||