国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (2): 129-134.doi: 10.12280/gjszjk.20210535
收稿日期:
2021-11-15
出版日期:
2022-03-15
发布日期:
2022-03-29
通讯作者:
夏小雨
E-mail:zpxiaxy@shsmu.edu.cn
基金资助:
WANG Xin-yi, WANG Zhi-qi, WANG Jun, XU Qin-zhou, XIA Xiao-yu()
Received:
2021-11-15
Published:
2022-03-15
Online:
2022-03-29
Contact:
XIA Xiao-yu
E-mail:zpxiaxy@shsmu.edu.cn
摘要:
精子领(manchette)是一种暂时存在于精子形成过程中的结构,主要由微管和肌动蛋白构成。作为细胞骨架的特殊组织形式,精子领还与精子细胞中的核骨架及中心体存在相互作用。在精子细胞变形过程中,精子领是运输囊泡和蛋白质的重要平台,其结构或功能异常可能导致鞭毛组装及精子核成形障碍,最终影响雄性生育能力。综述精子领的结构组成、形成及解聚、精子领内运输(intra-manchette transport,IMT)及调控机制。其中,调控精子领形成及维持的蛋白包括钩蛋白家族、中心体蛋白家族、纤毛及鞭毛相关蛋白家族等;参与IMT的蛋白包括驱动蛋白家族、鞭毛内运输蛋白复合体-B等。深入了解精子领相关机制有助于阐明部分男性生精障碍病例的病因及病理机制,也可为男性避孕方法的开发提供新的思路。
王心依, 王治琪, 王珺, 徐琴舟, 夏小雨. 精子领形成及精子领内运输相关蛋白的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(2): 129-134.
WANG Xin-yi, WANG Zhi-qi, WANG Jun, XU Qin-zhou, XIA Xiao-yu. Regulation of Manchette Formation and Intra-Manchette Transport[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(2): 129-134.
[1] | Holstein AF, Roosen-Runge EC. Atlas of Human Spermatogenesis[M]. Berlin:Grosse, 1981. |
[2] |
Chen SR, Batool A, Wang YQ, et al. The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon′s head to tail[J]. Cell Death Dis, 2016, 7(11):e2472. doi: 10.1038/cddis.2016.344.
doi: 10.1038/cddis.2016.344 URL |
[3] |
Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis[J]. Reproduction, 2016, 151(4):R43-R54. doi: 10.1530/REP-15-0310.
doi: 10.1530/REP-15-0310 URL |
[4] |
Mochida K, Rivkin E, Gil M, et al. Keratin 9 is a component of the perinuclear ring of the manchette of rat spermatids[J]. Dev Biol, 2000, 227(2):510-519. doi: 10.1006/dbio.2000.9911.
doi: 10.1006/dbio.2000.9911 pmid: 11071770 |
[5] |
Kato A, Nagata Y, Todokoro K. Delta-tubulin is a component of intercellular bridges and both the early and mature perinuclear rings during spermatogenesis[J]. Dev Biol, 2004, 269(1):196-205. doi: 10.1016/j.ydbio.2004.01.026.
doi: 10.1016/j.ydbio.2004.01.026 URL |
[6] |
Gao Q, Khan R, Yu C, et al. The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis[J]. J Biol Chem, 2020, 295(19):6289-6298. doi: 10.1074/jbc.RA119.012375.
doi: 10.1074/jbc.RA119.012375 URL |
[7] |
Mendoza-Lujambio I, Burfeind P, Dixkens C, et al. The Hook1 gene is non-functional in the abnormal spermatozoon head shape (azh) mutant mouse[J]. Hum Mol Genet, 2002, 11(14):1647-1658. doi: 10.1093/hmg/11.14.1647.
doi: 10.1093/hmg/11.14.1647 pmid: 12075009 |
[8] |
Chen H, Zhu Y, Zhu Z, et al. Detection of heterozygous mutation in hook microtubule-tethering protein 1 in three patients with decapitated and decaudated spermatozoa syndrome[J]. J Med Genet, 2018, 55(3):150-157. doi: 10.1136/jmedgenet-2016-104404.
doi: 10.1136/jmedgenet-2016-104404 URL |
[9] |
Zhou J, Du YR, Qin WH, et al. RIM-BP3 is a manchette-associated protein essential for spermiogenesis[J]. Development, 2009, 136(3):373-382. doi: 10.1242/dev.030858.
doi: 10.1242/dev.030858 URL |
[10] |
Liu Y, DeBoer K, de Kretser DM, et al. LRGUK-1 is required for basal body and manchette function during spermatogenesis and male fertility[J]. PLoS Genet, 2015, 11(3):e1005090. doi: 10.1371/journal.pgen.1005090.
doi: 10.1371/journal.pgen.1005090 URL |
[11] |
Okuda H, DeBoer K, O′Connor AE, et al. LRGUK1 is part of a multiprotein complex required for manchette function and male fertility[J]. FASEB J, 2017, 31(3):1141-1152. doi: 10.1096/fj.201600909R.
doi: 10.1096/fj.201600909R URL |
[12] |
Calvi A, Wong AS, Wright G, et al. SUN4 is essential for nuclear remodeling during mammalian spermiogenesis[J]. Dev Biol, 2015, 407(2):321-330. doi: 10.1016/j.ydbio.2015.09.010.
doi: 10.1016/j.ydbio.2015.09.010 URL |
[13] |
Kazarian E, Son H, Sapao P, et al. SPAG17 Is Required for Male Germ Cell Differentiation and Fertility[J]. Int J Mol Sci, 2018, 19(4):1252. doi: 10.3390/ijms19041252.
doi: 10.3390/ijms19041252 URL |
[14] |
Liu Q, Guo Q, Guo W, et al. Loss of CEP70 function affects acrosome biogenesis and flagella formation during spermiogenesis[J]. Cell Death Dis, 2021, 12(5):478. doi: 10.1038/s41419-021-03755-z.
doi: 10.1038/s41419-021-03755-z URL |
[15] |
Hall EA, Keighren M, Ford MJ, et al. Acute versus chronic loss of mammalian Azi1/Cep131 results in distinct ciliary phenotypes[J]. PLoS Genet, 2013, 9(12):e1003928. doi: 10.1371/journal.pgen.1003928.
doi: 10.1371/journal.pgen.1003928 URL |
[16] |
Tang S, Wang X, Li W, et al. Biallelic Mutations in CFAP43 and CFAP44 Cause Male Infertility with Multiple Morphological Abnormalities of the Sperm Flagella[J]. Am J Hum Genet, 2017, 100(6):854-864. doi: 10.1016/j.ajhg.2017.04.012.
doi: 10.1016/j.ajhg.2017.04.012 URL |
[17] |
Yu Y, Wang J, Zhou L, et al. CFAP43-mediated intra-manchette transport is required for sperm head shaping and flagella formation[J]. Zygote, 2021, 29(1):75-81. doi: 10.1017/S0967199420000556.
doi: 10.1017/S0967199420000556 URL |
[18] |
Wang W, Tian S, Nie H, et al. CFAP65 is required in the acrosome biogenesis and mitochondrial sheath assembly during spermiogenesis[J]. Hum Mol Genet, 2021, 30(23):2240-2254. doi: 10.1093/hmg/ddab185.
doi: 10.1093/hmg/ddab185 URL |
[19] |
Akhmanova A, Mausset-Bonnefont AL, van Cappellen W, et al. The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis[J]. Genes Dev, 2005, 19(20):2501-2515. doi: 10.1101/gad.344505.
doi: 10.1101/gad.344505 URL |
[20] |
Umer N, Arévalo L, Phadke S, et al. Loss of Profilin3 Impairs Spermiogenesis by Affecting Acrosome Biogenesis, Autophagy, Manchette Development and Mitochondrial Organization[J]. Front Cell Dev Biol, 2021, 9:749559. doi: 10.3389/fcell.2021.749559.
doi: 10.3389/fcell.2021.749559 URL |
[21] |
Lin YH, Huang CY, Ke CC, et al. ACTN4 Mediates SEPT14 Mutation-Induced Sperm Head Defects[J]. Biomedicines, 2020, 8(11):518. doi: 10.3390/biomedicines8110518.
doi: 10.3390/biomedicines8110518 URL |
[22] |
Ma Q, Cao C, Zhuang C, et al. AXDND1, a novel testis-enriched gene, is required for spermiogenesis and male fertility[J]. Cell Death Discov, 2021, 7(1):348. doi: 10.1038/s41420-021-00738-z.
doi: 10.1038/s41420-021-00738-z URL |
[23] |
Ma DD, Wang DH, Yang WX. Kinesins in spermatogenesis[J]. Biol Reprod, 2017, 96(2):267-276. doi: 10.1095/biolreprod.116.144113.
doi: 10.1095/biolreprod.116.144113 URL |
[24] |
Olenick MA, Holzbaur E. Dynein activators and adaptors at a glance[J]. J Cell Sci, 2019, 132(6):jcs227132. doi: 10.1242/jcs.227132.
doi: 10.1242/jcs.227132 |
[25] |
Teves ME, Roldan E, Krapf D, et al. Sperm Differentiation: The Role of Trafficking of Proteins[J]. Int J Mol Sci, 2020, 21(10):3702. doi: 10.3390/ijms21103702.
doi: 10.3390/ijms21103702 URL |
[26] |
Leslie JS, Rawlins LE, Chioza BA, et al. MNS1 variant associated with situs inversus and male infertility[J]. Eur J Hum Genet, 2020, 28(1):50-55. doi: 10.1038/s41431-019-0489-z.
doi: 10.1038/s41431-019-0489-z URL |
[27] |
Lehti MS, Kotaja N, Sironen A. KIF3A is essential for sperm tail formation and manchette function[J]. Mol Cell Endocrinol, 2013, 377(1/2):44-55. doi: 10.1016/j.mce.2013.06.030.
doi: 10.1016/j.mce.2013.06.030 URL |
[28] |
San Agustin JT, Pazour GJ, Witman GB. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm[J]. Mol Biol Cell, 2015, 26(24):4358-4372. doi: 10.1091/mbc.E15-08-0578.
doi: 10.1091/mbc.E15-08-0578 URL |
[29] |
Shi L, Zhou T, Huang Q, et al. Intraflagellar transport protein 74 is essential for spermatogenesis and male fertility in mice?[J]. Biol Reprod, 2019, 101(1):188-199. doi: 10.1093/biolre/ioz071.
doi: 10.1093/biolre/ioz071 URL |
[30] |
Zhang Y, Liu H, Li W, et al. Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice[J]. Dev Biol, 2017, 432(1):125-139. doi: 10.1016/j.ydbio.2017.09.023.
doi: S0012-1606(17)30463-3 pmid: 28964737 |
[31] |
Liu H, Li W, Zhang Y, et al. IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation[J]. Biol Reprod, 2017, 96(5):993-1006. doi: 10.1093/biolre/iox029.
doi: 10.1093/biolre/iox029 URL |
[32] |
Nozawa YI, Yao E, Gacayan R, et al. Mammalian Fused is essential for sperm head shaping and periaxonemal structure formation during spermatogenesis[J]. Dev Biol, 2014, 388(2):170-180. doi: 10.1016/j.ydbio.2014.02.002.
doi: 10.1016/j.ydbio.2014.02.002 pmid: 24525297 |
[33] |
Li W, Huang Q, Zhang L, et al. A single amino acid mutation in the mouse MEIG1 protein disrupts a cargo transport system necessary for sperm formation[J]. J Biol Chem, 2021, 297(5):101312. doi: 10.1016/j.jbc.2021.101312.
doi: 10.1016/j.jbc.2021.101312 URL |
[34] |
Li W, Tang W, Teves ME, et al. A MEIG1/PACRG complex in the manchette is essential for building the sperm flagella[J]. Development, 2015, 142(5):921-930. doi: 10.1242/dev.119834.
doi: 10.1242/dev.119834 URL |
[35] |
Lehti MS, Zhang FP, Kotaja N, et al. SPEF2 functions in microtubule-mediated transport in elongating spermatids to ensure proper male germ cell differentiation[J]. Development, 2017, 144(14):2683-2693. doi: 10.1242/dev.152108.
doi: 10.1242/dev.152108 pmid: 28619825 |
[36] |
Zheng C, Ouyang YC, Jiang B, et al. Non-canonical RNA polyadenylation polymerase FAM46C is essential for fastening sperm head and flagellum in mice[J]. Biol Reprod, 2019, 100(6):1673-1685. doi: 10.1093/biolre/ioz083.
doi: 10.1093/biolre/ioz083 URL |
[37] |
O′Donnell L, Rhodes D, Smith SJ, et al. An essential role for katanin p80 and microtubule severing in male gamete production[J]. PLoS Genet, 2012, 8(5):e1002698. doi: 10.1371/journal.pgen.1002698.
doi: 10.1371/journal.pgen.1002698 URL |
[38] |
Ho UY, Feng CA, Yeap YY, et al. WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis[J]. Commun Biol, 2021, 4(1):645. doi: 10.1038/s42003-021-02171-5.
doi: 10.1038/s42003-021-02171-5 URL |
[39] |
Dunleavy J, Okuda H, O′Connor AE, et al. Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse[J]. PLoS Genet, 2017, 13(11):e1007078. doi: 10.1371/journal.pgen.1007078.
doi: 10.1371/journal.pgen.1007078 URL |
[40] |
Bao J, Wu Q, Song R, et al. RANBP17 is localized to the XY body of spermatocytes and interacts with SPEM1 on the manchette of elongating spermatids[J]. Mol Cell Endocrinol, 2011, 333(2):134-142. doi: 10.1016/j.mce.2010.12.021.
doi: 10.1016/j.mce.2010.12.021 URL |
[41] |
Shi Y, Zhang L, Song S, et al. The mouse transcription factor-like 5 gene encodes a protein localized in the manchette and centriole of the elongating spermatid[J]. Andrology, 2013, 1(3):431-439. doi: 10.1111/j.2047-2927.2013.00069.x.
doi: 10.1111/j.2047-2927.2013.00069.x pmid: 23444080 |
[42] |
Qi Y, Jiang M, Yuan Y, et al. ADP-ribosylation factor-like 3, a manchette-associated protein, is essential for mouse spermiogenesis[J]. Mol Hum Reprod, 2013, 19(5):327-335. doi: 10.1093/molehr/ gat001.
doi: 10.1093/molehr/ gat001 URL |
[43] |
Schwarz T, Prieler B, Schmid JA, et al. Ccdc181 is a microtubule-binding protein that interacts with Hook1 in haploid male germ cells and localizes to the sperm tail and motile cilia[J]. Eur J Cell Biol, 2017, 96(3):276-288. doi: 10.1016/j.ejcb.2017.02.003.
doi: S0171-9335(16)30178-9 pmid: 28283191 |
[44] |
Tapia Contreras C, Hoyer-Fender S. CCDC42 Localizes to Manchette, HTCA and Tail and Interacts With ODF1 and ODF2 in the Formation of the Male Germ Cell Cytoskeleton[J]. Front Cell Dev Biol, 2019, 7:151. doi: 10.3389/fcell.2019.00151.
doi: 10.3389/fcell.2019.00151 URL |
[45] |
Liu Y, Zhang L, Li W, et al. The sperm-associated antigen 6 interactome and its role in spermatogenesis[J]. Reproduction, 2019, 158(2):181-197. doi: 10.1530/REP-18-0522.
doi: 10.1530/REP-18-0522 |
[46] |
Pleuger C, Lehti MS, Cooper M, et al. CBE1 Is a Manchette- and Mitochondria-Associated Protein With a Potential Role in Somatic Cell Proliferation[J]. Endocrinology, 2019, 160(11):2573-2586. doi: 10.1210/en.2019-00468.
doi: 10.1210/en.2019-00468 |
[47] |
Tapia Contreras C, Hoyer-Fender S. The WD40-protein CFAP52/WDR16 is a centrosome/basal body protein and localizes to the manchette and the flagellum in male germ cells[J]. Sci Rep, 2020, 10(1):14240. doi: 10.1038/s41598-020-71120-9.
doi: 10.1038/s41598-020-71120-9 URL |
[1] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[2] | 焦梦文, 张月文, 王玲, 莫少康. 环状RNA在生殖系统的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 322-327. |
[3] | 梁越, 董杰, 肖西峰, 王晓红. miR-202在生殖调控中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 228-233. |
[4] | 周昕玥, 张安妮, 张学红. m6A甲基化修饰在生殖相关疾病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 392-397. |
[5] | 陈若霖, 张云山. 精子DNA损伤的机制和临床相关性[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 130-134. |
[6] | 常天晴, 吴华, 冯睿芝, 钱云. 精子顶体发育相关蛋白的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 44-49. |
[7] | 付旭, 周莹, 顾怡栋, 王家雄, 杨慎敏. 先天性双侧输精管缺如伴生精功能障碍一例[J]. 国际生殖健康/计划生育, 2022, 41(3): 204-206. |
[8] | 白银阳, 熊芳, 张昀, 陈洁, 徐丽爽, 汪敏. 围生期低剂量双酚A对子代雄鼠生精功能的影响[J]. 国际生殖健康/计划生育, 2021, 40(5): 353-358. |
[9] | 张萌卉, 刘笑聪, 郭艺红. m6A动态调控网络在生殖系统中的作用[J]. 国际生殖健康/计划生育, 2021, 40(4): 306-309. |
[10] | 金明昊, 黄文一, 张梦旖, 张一苇, 刘悦, 丁之德. 雄性生殖系统中瘦素表达及功能的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(1): 38-43. |
[11] | 陈丽, 孟昱时. 他莫昔芬在生殖领域的应用进展[J]. 国际生殖健康/计划生育, 2020, 39(6): 509-513. |
[12] | 曾毓琪,张小莉,朱可喻,袁天宜,欧阳文珺,刘悦,丁之德. 激素及其受体调节Sertoli细胞功能的研究进展[J]. 国际生殖健康/计划生育, 2019, 38(5): 407-412. |
[13] | 李玲君,张月鑫,崔毓桂. 山梨醇代谢旁路及其在生殖领域研究进展[J]. 国际生殖健康/计划生育, 2019, 38(4): 313-317. |
[14] | 何晨,刘强. 非编码RNA在精子发生中的功能[J]. 国际生殖健康/计划生育, 2019, 38(3): 213-216. |
[15] | 田成成,宋文妍. LncRNAs与miRNAs在非梗阻性无精症中的研究进展[J]. 国际生殖健康/计划生育, 2019, 38(2): 142-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||