国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (5): 392-397.doi: 10.12280/gjszjk.20230145
收稿日期:
2023-03-31
出版日期:
2023-09-15
发布日期:
2023-09-13
通讯作者:
张学红
E-mail:zhangxueh@lzu.edu.cn
基金资助:
ZHOU Xin-yue, ZHANG An-ni, ZHANG Xue-hong()
Received:
2023-03-31
Published:
2023-09-15
Online:
2023-09-13
Contact:
ZHANG Xue-hong
E-mail:zhangxueh@lzu.edu.cn
摘要:
N6-甲基腺苷(N6-methyladenosine,m6A)甲基化修饰是真核生物最常见的RNA修饰,通过控制RNA代谢、选择性剪接、降解和翻译等过程调控基因表达和生物学功能。近年研究发现m6A甲基化修饰在生殖系统中发挥重要的调节作用,参与多囊卵巢综合征、子宫内膜异位症、早发性卵巢功能不全、子宫腺肌病等多种女性生殖内分泌疾病和女性生殖系统肿瘤的发生、发展。此外,m6A甲基化修饰还可以调节人类精子发生和睾丸功能,与男性少弱精子症和男性生殖系统肿瘤相关。提示m6A甲基化修饰可能是生殖相关疾病调控的新靶点。综述m6A甲基化修饰的作用机制及其在生殖相关疾病中的研究进展,对生殖相关疾病的诊断和治疗具有一定指导意义。
周昕玥, 张安妮, 张学红. m6A甲基化修饰在生殖相关疾病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 392-397.
ZHOU Xin-yue, ZHANG An-ni, ZHANG Xue-hong. Research Progress of m6A Modification in Reproductive-Related Diseases[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 392-397.
[1] |
Chen J, Fang Y, Xu Y, et al. Role of m6A modification in female infertility and reproductive system diseases[J]. Int J Biol Sci, 2022, 18(9):3592-3604. doi: 10.7150/ijbs.69771.
doi: 10.7150/ijbs.69771 pmid: 35813486 |
[2] |
Chen Y, Wang J, Xu D, et al. m6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells[J]. Autophagy, 2021, 17(2):457-475. doi: 10.1080/15548627.2020.1720431.
doi: 10.1080/15548627.2020.1720431 URL |
[3] |
Chen L, Gao Y, Xu S, et al. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms[J]. Front Immunol, 2023, 14:1162607. doi: 10.3389/fimmu.2023.1162607.
doi: 10.3389/fimmu.2023.1162607 URL |
[4] |
Satterwhite ER, Mansfield KD. RNA methyltransferase METTL16: Targets and function[J]. Wiley Interdiscip Rev RNA, 2022, 13(2):e1681. doi: 10.1002/wrna.1681.
doi: 10.1002/wrna.1681 URL |
[5] |
Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J]. Elife, 2017, 6:e31311. doi: 10.7554/eLife.31311.
doi: 10.7554/eLife.31311 URL |
[6] |
Kim GW, Siddiqui A. N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition[J]. Proc Natl Acad Sci U S A, 2021, 118(10):e2022024118. doi: 10.1073/pnas.2022024118.
doi: 10.1073/pnas.2022024118 URL |
[7] |
Huang B, Ding C, Zou Q, et al. Cyclophosphamide Regulates N6-Methyladenosine and m6A RNA Enzyme Levels in Human Granulosa Cells and in Ovaries of a Premature Ovarian Aging Mouse Model[J]. Front Endocrinol(Lausanne), 2019, 10:415. doi: 10.3389/fendo.2019.00415.
doi: 10.3389/fendo.2019.00415 |
[8] |
Jiang ZX, Wang YN, Li ZY, et al. Correction: The m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging[J]. Cell Death Dis, 2021, 12(12):1114. doi: 10.1038/s41419-021-04194-6.
doi: 10.1038/s41419-021-04194-6 |
[9] |
Wu S, Liu K, Zhou B, et al. N6-methyladenosine modifications in maternal-fetal crosstalk and gestational diseases[J] Front Cell Dev Biol, 2023, 11:1164706. doi: 10.3389/fcell.2023.1164706.
doi: 10.3389/fcell.2023.1164706 URL |
[10] |
Li XC, Jin F, Wang BY, et al. The m6A demethylase ALKBH5 controls trophoblast invasion at the maternal-fetal interface by regulating the stability of CYR61 mRNA[J]. Theranostics, 2019, 9(13):3853-3865. doi: 10.7150/thno.31868.
doi: 10.7150/thno.31868 URL |
[11] |
Huang N, Gao Y, Zhang M, et al. METTL3-Mediated m6A RNA Methylation of ZBTB4 Interferes With Trophoblast Invasion and Maybe Involved in RSA[J]. Front Cell Dev Biol, 2022, 10:894810. doi: 10.3389/fcell.2022.894810.
doi: 10.3389/fcell.2022.894810 URL |
[12] |
Jiang L, Zhang M, Wu J, et al. Exploring diagnostic m6A regulators in endometriosis[J]. Aging(Albany NY), 2020, 12(24):25916-25938. doi: 10.18632/aging.202163.
doi: 10.18632/aging.202163 |
[13] |
Li X, Xiong W, Long X, et al. Inhibition of METTL3/m6A/miR126 promotes the migration and invasion of endometrial stromal cells in endometriosis[J]. Biol Reprod, 2021, 105(5):1221-1233. doi: 10.1093/biolre/ioab152.
doi: 10.1093/biolre/ioab152 pmid: 34382070 |
[14] |
Zhao S, Zhang B, Yuan H, et al. IGF2BP2 promotes the progression of ovarian endometriosis by regulating m6A-modified MEIS2 and GATA6[J]. Int J Biochem Cell Biol, 2022, 152:106296. doi: 10.1016/j.biocel.2022.106296.
doi: 10.1016/j.biocel.2022.106296 URL |
[15] |
Zhang S, Deng W, Liu Q, et al. Altered m6A modification is involved in up-regulated expression of FOXO3 in luteinized granulosa cells of non-obese polycystic ovary syndrome patients[J]. J Cell Mol Med, 2020, 24(20):11874-11882. doi: 10.1111/jcmm.15807.
doi: 10.1111/jcmm.15807 URL |
[16] |
Zhou L, Han X, Li W, et al. N6-methyladenosine Demethylase FTO Induces the Dysfunctions of Ovarian Granulosa Cells by Upregulating Flotillin 2[J]. Reprod Sci, 2022, 29(4):1305-1315. doi: 10.1007/s43032-021-00664-6.
doi: 10.1007/s43032-021-00664-6 |
[17] |
Zhai J, Li S, Sen S, et al. m6A RNA Methylation Regulators Contribute to Eutopic Endometrium and Myometrium Dysfunction in Adenomyosis[J]. Front Genet, 2020, 11:716. doi: 10.3389/fgene.2020.00716.
doi: 10.3389/fgene.2020.00716 URL |
[18] |
Lin Z, Hsu PJ, Xing X, et al. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis[J]. Cell Res, 2017, 27(10):1216-1230. doi: 10.1038/cr.2017.117.
doi: 10.1038/cr.2017.117 URL |
[19] |
Tang C, Klukovich R, Peng H, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells[J]. Proc Natl Acad Sci U S A, 2018, 115(2):E325-E333. doi: 10.1073/pnas.1717794115.
doi: 10.1073/pnas.1717794115 |
[20] |
Soh Y, Mikedis MM, Kojima M, et al. Meioc maintains an extended meiotic prophaseⅠin mice[J]. PLoS Genet, 2017, 13(4):e1006704. doi: 10.1371/journal.pgen.1006704.
doi: 10.1371/journal.pgen.1006704 URL |
[21] |
Huang T, Liu Z, Zheng Y, et al. YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via m6A/mRNA pathway[J]. Cell Death Dis, 2020, 11(1):37. doi: 10.1038/s41419-020-2235-4.
doi: 10.1038/s41419-020-2235-4 pmid: 31959747 |
[22] |
Jia GX, Lin Z, Yan RG, et al. WTAP Function in Sertoli Cells Is Essential for Sustaining the Spermatogonial Stem Cell Niche[J]. Stem Cell Reports, 2020, 15(4):968-982. doi: 10.1016/j.stemcr.2020.09.001.
doi: 10.1016/j.stemcr.2020.09.001 URL |
[23] |
Landfors M, Nakken S, Fusser M, et al. Sequencing of FTO and ALKBH5 in men undergoing infertility work-up identifies an infertility-associated variant and two missense mutations[J]. Fertil Steril, 2016, 105(5):1170-1179.e5. doi: 10.1016/j.fertnstert.2016.01.002.
doi: S0015-0282(16)00037-6 pmid: 26820768 |
[24] |
Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation[J]. Nucleic Acids Res, 2020, 48(7):3816-3831. doi: 10.1093/nar/gkaa048.
doi: 10.1093/nar/gkaa048 pmid: 31996915 |
[25] |
Li J, Wu L, Pei M, et al. YTHDF2, a protein repressed by miR-145, regulates proliferation, apoptosis, and migration in ovarian cancer cells[J]. J Ovarian Res, 2020, 13(1):111. doi: 10.1186/s13048-020-00717-5.
doi: 10.1186/s13048-020-00717-5 pmid: 32948220 |
[26] |
Liang S, Guan H, Lin X, et al. METTL3 serves an oncogenic role in human ovarian cancer cells partially via the AKT signaling pathway[J]. Oncol Lett, 2020, 19(4):3197-3204. doi: 10.3892/ol.2020.11425.
doi: 10.3892/ol.2020.11425 pmid: 32256816 |
[27] |
Huang H, Wang Y, Kandpal M, et al. FTO-Dependent N6-Methyladenosine Modifications Inhibit Ovarian Cancer Stem Cell Self-Renewal by Blocking cAMP Signaling[J]. Cancer Res, 2020, 80(16):3200-3214. doi: 10.1158/0008-5472.CAN-19-4044.
doi: 10.1158/0008-5472.CAN-19-4044 pmid: 32606006 |
[28] |
Wang Q, Guo X, Li L, et al. N6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification[J]. Cell Death Dis, 2020, 11(10):911. doi: 10.1038/s41419-020-03071-y.
doi: 10.1038/s41419-020-03071-y |
[29] |
Huang C, Liang J, Lin S, et al. N6-Methyladenosine Associated Silencing of miR-193b Promotes Cervical Cancer Aggressiveness by Targeting CCND1[J]. Front Oncol, 2021, 11:666597. doi: 10.3389/fonc.2021.666597.
doi: 10.3389/fonc.2021.666597 URL |
[30] |
Wang H, Luo Q, Kang J, et al. YTHDF1 Aggravates the Progression of Cervical Cancer Through m6A-Mediated Up-Regulation of RANBP2[J]. Front Oncol, 2021, 11:650383. doi: 10.3389/fonc.2021.650383.
doi: 10.3389/fonc.2021.650383 URL |
[31] |
Hong L, Pu X, Gan H, et al. YTHDF2 inhibit the tumorigenicity of endometrial cancer via downregulating the expression of IRS1 methylated with m6A[J]. J Cancer, 2021, 12(13):3809-3818. doi: 10.7150/jca.54527.
doi: 10.7150/jca.54527 URL |
[32] |
Li Q, Wang C, Dong W, et al. WTAP facilitates progression of endometrial cancer via CAV-1/NF-κB axis[J]. Cell Biol Int, 2021, 45(6):1269-1277. doi: 10.1002/cbin.11570.
doi: 10.1002/cbin.11570 pmid: 33559954 |
[33] |
Zhang L, Wan Y, Zhang Z, et al. FTO demethylates m6A modifications in HOXB13 mRNA and promotes endometrial cancer metastasis by activating the WNT signalling pathway[J]. RNA Biol, 2021, 18(9):1265-1278. doi: 10.1080/15476286.2020.1841458.
doi: 10.1080/15476286.2020.1841458 URL |
[34] |
Pu X, Gu Z, Gu Z. ALKBH5 regulates IGF1R expression to promote the Proliferation and Tumorigenicity of Endometrial Cancer[J]. J Cancer, 2020, 11(19):5612-5622. doi: 10.7150/jca.46097.
doi: 10.7150/jca.46097 pmid: 32913456 |
[35] |
Lobo J, Costa AL, Cantante M, et al. m6A RNA modification and its writer/reader VIRMA/YTHDF3 in testicular germ cell tumors: a role in seminoma phenotype maintenance[J]. J Transl Med, 2019, 17(1):79. doi: 10.1186/s12967-019-1837-z.
doi: 10.1186/s12967-019-1837-z |
[36] |
Cong R, Ji C, Zhang J, et al. m6A RNA methylation regulators play an important role in the prognosis of patients with testicular germ cell tumor[J]. Transl Androl Urol, 2021, 10(2):662-679. doi: 10.21037/tau-20-963.
doi: 10.21037/tau-20-963 pmid: 33718069 |
[37] |
Wei J, Yin Y, Zhou J, et al. METTL3 potentiates resistance to cisplatin through m6A modification of TFAP2C in seminoma[J]. J Cell Mol Med, 2020, 24(19):11366-11380. doi: 10.1111/jcmm.15738.
doi: 10.1111/jcmm.15738 URL |
[1] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[2] | 焦梦文, 张月文, 王玲, 莫少康. 环状RNA在生殖系统的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 322-327. |
[3] | 梁越, 董杰, 肖西峰, 王晓红. miR-202在生殖调控中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 228-233. |
[4] | 刘一燃, 冯睿芝, 钱云. 多囊卵巢综合征中翻译后修饰的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 38-42. |
[5] | 闻鑫, 赵晓丽, 栾祖乾, 高娜, 董融, 夏天. N6-甲基腺嘌呤修饰在卵子发生及早期胚胎发育中的调控作用[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 310-316. |
[6] | 陈若霖, 张云山. 精子DNA损伤的机制和临床相关性[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 130-134. |
[7] | 常天晴, 吴华, 冯睿芝, 钱云. 精子顶体发育相关蛋白的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 44-49. |
[8] | 熊玉晶, 罗婉彬, 艾细雄, 徐艳文. 慢性子宫内膜炎致炎机制的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 60-65. |
[9] | 申梦丹, 贺娟娟, 高明霞, 梁兰兰, 胡俊平. 生殖相关疾病与膳食炎症指数关系的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(5): 436-440. |
[10] | 付旭, 周莹, 顾怡栋, 王家雄, 杨慎敏. 先天性双侧输精管缺如伴生精功能障碍一例[J]. 国际生殖健康/计划生育, 2022, 41(3): 204-206. |
[11] | 王心依, 王治琪, 王珺, 徐琴舟, 夏小雨. 精子领形成及精子领内运输相关蛋白的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(2): 129-134. |
[12] | 白银阳, 熊芳, 张昀, 陈洁, 徐丽爽, 汪敏. 围生期低剂量双酚A对子代雄鼠生精功能的影响[J]. 国际生殖健康/计划生育, 2021, 40(5): 353-358. |
[13] | 张萌卉, 刘笑聪, 郭艺红. m6A动态调控网络在生殖系统中的作用[J]. 国际生殖健康/计划生育, 2021, 40(4): 306-309. |
[14] | 金明昊, 黄文一, 张梦旖, 张一苇, 刘悦, 丁之德. 雄性生殖系统中瘦素表达及功能的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(1): 38-43. |
[15] | 朱璟希, 李红. 表观遗传学在复发性流产中的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(1): 69-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||