Journal of International Reproductive Health/Family Planning ›› 2021, Vol. 40 ›› Issue (3): 247-251.doi: 10.12280/gjszjk.20200592
• Review • Previous Articles Next Articles
WANG Yi-xiang, WU Lu-ming, WANG Yi-qing, ZHANG Xue-hong△()
Received:
2020-10-22
Published:
2021-05-15
Online:
2021-05-28
Contact:
ZHANG Xue-hong
E-mail:zhangxueh@lzu.edu.cn
WANG Yi-xiang, WU Lu-ming, WANG Yi-qing, ZHANG Xue-hong. Research Progress of Sonic Hedgehog Signaling Pathway in Intrauterine Adhesion Fibrosis[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(3): 247-251.
Add to citation manager EndNote|Ris|BibTeX
[1] | Fritsch H . Ein Fall von volligen schwund der Gebaumutterhohle nach Auskratzung[J]. Zentralbl Gynaekol, 1894,18:1337-1342. |
[2] |
Asherman JG. Amenorrhoea traumatica (atretica)[J]. J Obstet Gynaecol Br Emp, 1948,55(1):23-30. doi: 10.1111/j.1471-0528.1948.tb07045.x.
doi: 10.1111/bjo.1948.55.issue-1 URL |
[3] |
Lin X, Zhang Y, Pan Y, et al. Endometrial stem cell-derived granulocyte-colony stimulating factor attenuates endometrial fibrosis via sonic hedgehog transcriptional activator Gli2[J]. Biol Reprod, 2018,98(4):480-490. doi: 10.1093/biolre/ioy005.
doi: 10.1093/biolre/ioy005 URL |
[4] |
Zhang L, Wang M, Zhang Q, et al. Estrogen therapy before hysteroscopic adhesiolysis improves the fertility outcome in patients with intrauterine adhesions[J]. Arch Gynecol Obstet, 2019,300(4):933-939. doi: 10.1007/s00404-019-05249-y.
doi: 10.1007/s00404-019-05249-y URL |
[5] | 丁媛, 刘莹, 武露明, 等. Hippo信号通路在宫腔粘连纤维化中的研究进展[J]. 中华生殖与避孕杂志, 2019,39(11):917-920. doi: 10.3760/cma.j.issn.2096-2916.2019.11.010. |
[6] |
Wei C, Pan Y, Zhang Y, et al. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells[J]. Cell Death Dis, 2020,11(9):755. doi: 10.1038/s41419-020-02956-2.
doi: 10.1038/s41419-020-02956-2 URL |
[7] | 中华医学会妇产科学分会. 宫腔粘连临床诊疗中国专家共识[J]. 中华妇产科杂志, 2015,50(12):881-887. doi: 10.3760/cma.j.issn.0529-567x.2015.12.001. |
[8] |
Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila[J]. Nature, 1980,287(5785):795-801. doi: 10.1038/287795a0.
URL pmid: 6776413 |
[9] |
Lézot F, Corre I, Morice S, et al. SHH Signaling Pathway Drives Pediatric Bone Sarcoma Progression[J]. Cells, 2020,9(3):536. doi: 10.3390/cells9030536.
doi: 10.3390/cells9030536 URL |
[10] |
Niyaz M, Khan MS, Mudassar S. Hedgehog Signaling: An Achilles′ Heel in Cancer[J]. Transl Oncol, 2019,12(10):1334-1344. doi: 10.1016/j.tranon.2019.07.004.
doi: 10.1016/j.tranon.2019.07.004 URL |
[11] |
Carballo GB, Honorato JR, de Lopes G , et al. A highlight on Sonic hedgehog pathway[J]. Cell Commun Signal, 2018,16(1):11. doi: 10.1186/s12964-018-0220-7.
doi: 10.1186/s12964-018-0220-7 URL |
[12] |
Zhou D, Tan RJ, Liu Y. Sonic hedgehog signaling in kidney fibrosis: a master communicator[J]. Sci China Life Sci, 2016,59(9):920-929. doi: 10.1007/s11427-016-0020-y.
doi: 10.1007/s11427-016-0020-y URL |
[13] |
Sasai N, Toriyama M, Kondo T. Hedgehog Signal and Genetic Disorders[J]. Front Genet, 2019,10:1103. doi: 10.3389/fgene.2019.01103.
doi: 10.3389/fgene.2019.01103 URL |
[14] |
Cao J, Liu D, Zhao S, et al. Estrogen attenuates TGF-β1-induced EMT in intrauterine adhesion by activating Wnt/β-catenin signaling pathway[J]. Braz J Med Biol Res, 2020,53(8):e9794. doi: 10.1590/1414-431x20209794.
doi: 10.1590/1414-431x20209794 URL |
[15] | Ning J, Zhang H, Yang H. MicroRNA?326 inhibits endometrial fibrosis by regulating TGF-β1/Smad3 pathway in intrauterine adhesions[J]. Mol Med Rep, 2018,18(2):2286-2292. doi: 10.3892/mmr.2018.9187. |
[16] | Guo LP, Chen LM, Chen F, et al. Smad signaling coincides with epithelial-mesenchymal transition in a rat model of intrauterine adhesion[J]. Am J Transl Res, 2019,11(8):4726-4737. |
[17] |
Yao Y, Chen R, Wang G, et al. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium[J]. Stem Cell Res Ther, 2019,10(1):225. doi: 10.1186/s13287-019-1332-8.
doi: 10.1186/s13287-019-1332-8 URL |
[18] |
Zhou SS, Ai ZZ, Li WN, et al. Shenkang VII Recipe Attenuates Unilateral Ureteral Obstruction-induced Renal Fibrosis via TGF-β/Smad, NF-κB and SHH Signaling Pathway[J]. Curr Med Sci, 2020,40(5):917-930. doi: 10.1007/s11596-020-2255-4.
doi: 10.1007/s11596-020-2255-4 URL |
[19] |
Liu X, Sun N, Mo N, et al. Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the Sonic Hedgehog signaling pathway[J]. Food Funct, 2019,10(6):3782-3797. doi: 10.1039/c9fo00373h.
doi: 10.1039/C9FO00373H URL |
[20] |
Bolaños AL, Milla CM, Lira JC, et al. Role of Sonic Hedgehog in idiopathic pulmonary fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2012,303(11):L978-L990. doi: 10.1152/ajplung.00184.
doi: 10.1152/ajplung.00184.2012 URL |
[21] |
Liang R, Kagwiria R, Zehender A, et al. Acyltransferase skinny hedgehog regulates TGFβ-dependent fibroblast activation in SSc[J]. Ann Rheum Dis, 2019,78(9):1269-1273. doi: 10.1136/annrheumdis-2019-215066.
doi: 10.1136/annrheumdis-2019-215066 URL |
[22] |
Liang R, Šumová B, Cordazzo C, et al. The transcription factor GLI2 as a downstream mediator of transforming growth factor-β-induced fibroblast activation in SSc[J]. Ann Rheum Dis, 2017,76(4):756-764. doi: 10.1136/annrheumdis-2016-209698.
doi: 10.1136/annrheumdis-2016-209698 URL |
[23] |
Bai Y, Lu H, Lin C, et al. Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis[J]. Int J Mol Med, 2016,37(5):1317-1327. doi: 10.3892/ijmm.2016.2546.
doi: 10.3892/ijmm.2016.2546 URL |
[24] |
Kim JS, Cho KS, Park SH, et al. Itraconazole Attenuates Peritoneal Fibrosis Through Its Effect on the Sonic Hedgehog Signaling Pathway in Mice[J]. Am J Nephrol, 2018,48(6):456-464. doi: 10.1159/000493550.
doi: 10.1159/000493550 URL |
[25] |
Charrier JB, Lapointe F, Le Douarin NM, et al. Anti-apoptotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis[J]. Development, 2001,128(20):4011-4020.
pmid: 11641224 |
[26] |
Thibert C, Teillet MA, Lapointe F, et al. Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog[J]. Science, 2003,301(5634):843-846. doi: 10.1126/science.1085405.
doi: 10.1126/science.1085405 URL |
[27] |
Marini KD, Payne BJ, Watkins DN, et al. Mechanisms of Hedgehog signalling in cancer[J]. Growth Factors, 2011,29(6):221-234. doi: 10.3109/08977194.2011.610756.
doi: 10.3109/08977194.2011.610756 URL |
[28] |
Hung HC, Liu CC, Chuang JY, et al. Inhibition of Sonic Hedgehog Signaling Suppresses Glioma Stem-Like Cells Likely Through Inducing Autophagic Cell Death[J]. Front Oncol, 2020,10:1233. doi: 10.3389/fonc.2020.01233.
doi: 10.3389/fonc.2020.01233 URL |
[29] |
Jimenez-Sanchez M, Menzies FM, Chang YY, et al. The Hedgehog signalling pathway regulates autophagy[J]. Nat Commun, 2012,3:1200. doi: 10.1038/ncomms2212.
doi: 10.1038/ncomms2212 URL pmid: 23149744 |
[30] |
Chinchilla P, Xiao L, Kazanietz MG, et al. Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways[J]. Cell Cycle, 2010,9(3):570-579. doi: 10.4161/cc.9.3.10591.
URL pmid: 20081366 |
[31] |
Gupta R, Mackie AR, Misener S, et al. Endothelial smoothened-dependent hedgehog signaling is not required for sonic hedgehog induced angiogenesis or ischemic tissue repair[J]. Lab Invest, 2018,98(5):682-691. doi: 10.1038/s41374-018-0028-5.
doi: 10.1038/s41374-018-0028-5 URL |
[32] |
Jeng KS, Chang CF, Lin SS. Sonic Hedgehog Signaling in Organogenesis, Tumors, and Tumor Microenvironments[J]. Int J Mol Sci, 2020,21(3):758. doi: 10.3390/ijms21030758.
doi: 10.3390/ijms21030758 URL |
[33] |
Fattahi S, Pilehchian Langroudi M, Akhavan-Niaki H. Hedgehog signaling pathway: Epigenetic regulation and role in disease and cancer development[J]. J Cell Physiol, 2018,233(8):5726-5735. doi: 10.1002/jcp.26506.
doi: 10.1002/jcp.26506 URL |
[34] |
Katoh Y, Katoh M. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation[J]. Curr Mol Med, 2009,9(7):873-886. doi: 10.2174/156652409789105570.
doi: 10.2174/156652409789105570 URL |
[1] | RAO Hui, LU Jiao-lan, ZHOU Huan, LI Xiong. Mesonephric-Like Adenocarcinoma of the Endometrium Involving Cervical Interstitium: A Case Report [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 410-414. |
[2] | LI Jia-li, TU Xu-xu, WANG Shi-meng, NIU Ding-ren, FENG Xiao-ling. Recurrent Spontaneous Abortion Related to Oxidative Stress at Maternal-Fetal Interface [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 435-440. |
[3] | WANG Jing, WANG Xiao-hui. Small Cell Neuroendocrine Carcinoma of the Endometrium: A Case Report and Literature Review [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 212-215. |
[4] | JIANG Le-ran, ZHANG Yuan, WANG Lin, DIAO Fei-yang. Research Progress in Single-Cell Omics of Human Endometrium [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 216-221. |
[5] | REN Lu-lu, REN Wen-chao, ZHANG Xiao-xuan, REN Chun-e. Pathways of Insulin Resistance in Ovarian Granulosa Cells of Polycystic Ovary Syndrome Patients [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 32-37. |
[6] | REN Yuan, MENG Yu-shi. Research Progress in the Pathophysiological Features and Treatment of Thin Endometrium [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 58-62. |
[7] | LIU Hong-jiang, JIANG Xiao-hua, WEI Zhao-lian. The Application of Mesenchymal Stem Cells and Combined Biomaterial Scaffolds in the Treatment of Intrauterine Adhesions [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 424-430. |
[8] | YAO Xin-yi, YU Ling. Advances of Therapy for Intrauterine Adhesions [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 431-436. |
[9] | XIONG Shu-yun, SUN Ke-feng, LI Yu-ke, XU Ying-hong, LIU Ming-hao. Research Progress of Stem Cell Therapy for Thin Endometrium [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 334-338. |
[10] | LIAO Dai-ya, LI Xue, QIAO Zhi-li, LIAO Xiang-yu, ZHANG Ke-rong. A Case Report of Pregnancy Complicated with Uterine Adhesion "Wall" [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 218-220. |
[11] | SHENG Jia-jia, DAI Zhi-jun, TANG Zhi-xia, YAN Chun, HONG Ming-yun. Analysis of Affecting Factors on Clinical Pregnancy Outcomes in GnRH Antagonist Protocol [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 7-12. |
[12] | LI Guang-can, ZHAI Chao, ZHANG Xiao-xuan, REN Chun-e. Research Progress of Transform Growth Factor-β1 in Intrauterine Adhesions [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 83-88. |
[13] | ZHU Xia, LI Hui-zhen, LIU Dan, MA Tian-zhong. The Signaling Pathways Involved in Embryo Implantation [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 409-413. |
[14] | XIANG Yi-ning, FENG Wei-wei. Advances in Pinopodes for Endometrial Receptivity Assessment [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 414-418. |
[15] | WANG Yan, MENG Qing-xia. Clinical Treatment Strategies of Repeated Implantation Failure [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(4): 302-307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||