Journal of International Reproductive Health/Family Planning ›› 2021, Vol. 40 ›› Issue (6): 471-475.doi: 10.12280/gjszjk.20210203
• Review • Previous Articles Next Articles
MAO Fei, FENG Rui-zhi, QIAN Yun()
Received:
2021-05-10
Published:
2021-11-15
Online:
2021-11-30
Contact:
QIAN Yun
E-mail:qianyun@njmu.edu.cn
MAO Fei, FENG Rui-zhi, QIAN Yun. Research Progress in Metabolomics of Mammalian Follicles[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 471-475.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Laisk T, Tšuiko O, Jatsenko T, et al. Demographic and evolutionary trends in ovarian function and aging[J]. Hum Reprod Update, 2019, 25(1):34-50. doi: 10.1093/humupd/dmy031.
doi: 10.1093/humupd/dmy031 |
[2] |
Zhou Z, Zheng D, Wu H, et al. Epidemiology of infertility in China: a population-based study[J]. BJOG, 2018, 125(4):432-441. doi: 10.1111/1471-0528.14966.
doi: 10.1111/1471-0528.14966 URL |
[3] |
Montani DA, Braga D, Borges E Jr, et al. Understanding mechanisms of oocyte development by follicular fluid lipidomics[J]. J Assist Reprod Genet, 2019, 36(5):1003-1011. doi: 10.1007/s10815-019-01428-7.
doi: 10.1007/s10815-019-01428-7 URL |
[4] |
Castiglione Morelli MA, Iuliano A, Schettini S, et al. NMR metabolic profiling of follicular fluid for investigating the different causes of female infertility: a pilot study[J]. Metabolomics, 2019, 15(2):19. doi: 10.1007/s11306-019-1481-x.
doi: 10.1007/s11306-019-1481-x pmid: 30830455 |
[5] |
Li L, Zhu S, Shu W, et al. Characterization of Metabolic Patterns in Mouse Oocytes during Meiotic Maturation[J]. Mol Cell, 2020, 80(3):525-540.e9. doi: 10.1016/j.molcel.2020.09.022.
doi: 10.1016/j.molcel.2020.09.022 URL |
[6] |
Guijas C, Montenegro-Burke JR, Warth B, et al. Metabolomics activity screening for identifying metabolites that modulate phenotype[J]. Nat Biotechnol, 2018, 36(4):316-320. doi: 10.1038/nbt.4101.
doi: 10.1038/nbt.4101 URL |
[7] |
Rajska A, Buszewska-Forajta M, Rachoń D, et al. Metabolomic Insight into Polycystic Ovary Syndrome-An Overview[J]. Int J Mol Sci, 2020, 21(14):4853. doi: 10.3390/ijms21144853.
doi: 10.3390/ijms21144853 URL |
[8] |
Khan R, Jiang X, Hameed U, et al. Role of Lipid Metabolism and Signaling in Mammalian Oocyte Maturation, Quality, and Acquisition of Competence[J]. Front Cell Dev Biol, 2021, 9:639704. doi: 10.3389/fcell.2021.639704.
doi: 10.3389/fcell.2021.639704 URL |
[9] |
Fontana J, Martínková S, Petr J, et al. Metabolic cooperation in the ovarian follicle[J]. Physiol Res, 2020, 69(1):33-48. doi: 10.33549/physiolres.934233.
doi: 10.33549/physiolres.934233 pmid: 31854191 |
[10] |
Uhde K, van Tol H, Stout T, et al. Metabolomic profiles of bovine cumulus cells and cumulus-oocyte-complex-conditioned medium during maturation in vitro[J]. Sci Rep, 2018, 8(1):9477. doi: 10.1038/s41598-018-27829-9.
doi: 10.1038/s41598-018-27829-9 URL |
[11] |
Yang J, Feng T, Li S, et al. Human follicular fluid shows diverse metabolic profiles at different follicle developmental stages[J]. Reprod Biol Endocrinol, 2020, 18(1):74. doi: 10.1186/s12958-020-00631-x.
doi: 10.1186/s12958-020-00631-x URL |
[12] |
Agarwal A, Sengupta P, Durairajanayagam D. Role of L-carnitine in female infertility[J]. Reprod Biol Endocrinol, 2018, 16(1):5. doi: 10.1186/s12958-018-0323-4.
doi: 10.1186/s12958-018-0323-4 URL |
[13] |
Giorgi VS, Da Broi MG, Paz CC, et al. N-Acetyl-Cysteine and l-Carnitine Prevent Meiotic Oocyte Damage Induced by Follicular Fluid From Infertile Women With Mild Endometriosis[J]. Reprod Sci, 2016, 23(3):342-351. doi: 10.1177/1933719115602772.
doi: 10.1177/1933719115602772 URL |
[14] |
Jiang W, Li Y, Zhao Y, et al. l-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes[J]. Theriogenology, 2020, 143:64-73. doi: 10.1016/j.theriogenology.2019.11.036.
doi: 10.1016/j.theriogenology.2019.11.036 URL |
[15] |
Kalhori Z, Mehranjani MS, Azadbakht M, et al. L-Carnitine improves endocrine function and folliculogenesis by reducing inflammation, oxidative stress and apoptosis in mice following induction of polycystic ovary syndrome[J]. Reprod Fertil Dev, 2019, 31(2):282-293. doi: 10.1071/RD18131.
doi: 10.1071/RD18131 URL |
[16] |
Kitano Y, Hashimoto S, Matsumoto H, et al. Oral administration of l-carnitine improves the clinical outcome of fertility in patients with IVF treatment[J]. Gynecol Endocrinol, 2018, 34(8):684-688. doi: 10.1080/09513590.2018.1431769.
doi: 10.1080/09513590.2018.1431769 pmid: 29378447 |
[17] |
Zhang H, McClatchie T, Baltz JM. l-Serine transport in growing and maturing mouse oocytes[J]. J Cell Physiol, 2020, 235(11):8585-8600. doi: 10.1002/jcp.29702.
doi: 10.1002/jcp.29702 pmid: 32329057 |
[18] |
Xie HL, Zhu S, Zhang J, et al. Glucose metabolism during in vitro maturation of mouse oocytes: An study using RNA interference[J]. J Cell Physiol, 2018, 233(9):6952-6964. doi: 10.1002/jcp.26484.
doi: 10.1002/jcp.26484 URL |
[19] |
Walter J, Huwiler F, Fortes C, et al. Analysis of the equine "cumulome" reveals major metabolic aberrations after maturation in vitro[J]. BMC Genomics, 2019, 20(1):588. doi: 10.1186/s12864-019-5836-5.
doi: 10.1186/s12864-019-5836-5 URL |
[20] |
Cetica P, Pintos L, Dalvit G, et al. Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro[J]. Reproduction, 2003, 126(6):753-763.
pmid: 14748694 |
[21] |
Rosen MP, Shen S, Dobson AT, et al. A quantitative assessment of follicle size on oocyte developmental competence[J]. Fertil Steril, 2008, 90(3):684-690. doi: 10.1016/j.fertnstert.2007.02.011.
doi: 10.1016/j.fertnstert.2007.02.011 URL |
[22] |
Wirleitner B, Okhowat J, Vištejnová L, et al. Relationship between follicular volume and oocyte competence, blastocyst development and live-birth rate: optimal follicle size for oocyte retrieval[J]. Ultrasound Obstet Gynecol, 2018, 51(1):118-125. doi: 10.1002/uog.18955.
doi: 10.1002/uog.18955 pmid: 29134715 |
[23] |
Mohr-Sasson A, Orvieto R, Blumenfeld S, et al. The association between follicle size and oocyte development as a function of final follicular maturation triggering[J]. Reprod Biomed Online, 2020, 40(6):887-893. doi: 10.1016/j.rbmo.2020.02.005.
doi: S1472-6483(20)30093-6 pmid: 32389425 |
[24] |
Sun Z, Song J, Zhang X, et al. SWATH(HM)-Based Metabolomics of Follicular Fluid in Patients Shows That Progesterone Adversely Affects Oocyte Quality[J]. Biomed Res Int, 2018, 2018:1780391. doi: 10.1155/2018/1780391.
doi: 10.1155/2018/1780391 |
[25] |
Zhang X, Wang T, Song J, et al. Study on follicular fluid metabolomics components at different ages based on lipid metabolism[J]. Reprod Biol Endocrinol, 2020, 18(1):42. doi: 10.1186/s12958-020-00599-8.
doi: 10.1186/s12958-020-00599-8 URL |
[26] |
Luti S, Fiaschi T, Magherini F, et al. Relationship between the metabolic and lipid profile in follicular fluid of women undergoing in vitro fertilization[J]. Mol Reprod Dev, 2020, 87(9):986-997. doi: 10.1002/mrd.23415.
doi: 10.1002/mrd.23415 URL |
[27] |
Zarezadeh R, Nouri M, Hamdi K, et al. Fatty acids of follicular fluid phospholipids and triglycerides display distinct association with IVF outcomes[J]. Reprod Biomed Online, 2021, 42(2):301-309. doi: 10.1016/j.rbmo.2020.09.024.
doi: 10.1016/j.rbmo.2020.09.024 pmid: 33279420 |
[28] |
Shibahara H, Ishiguro A, Inoue Y, et al. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells[J]. Theriogenology, 2020, 141:54-61. doi: 10.1016/j.theriogenology.2019.09.006.
doi: S0093-691X(19)30388-7 pmid: 31518729 |
[29] |
Itami N, Shirasuna K, Kuwayama T, et al. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes[J]. Biol Reprod, 2018, 98(5):644-653. doi: 10.1093/biolre/ioy023.
doi: 10.1093/biolre/ioy023 URL |
[30] |
Sessions-Bresnahan DR, Schauer KL, Heuberger AL, et al. Effect of Obesity on the Preovulatory Follicle and Lipid Fingerprint of Equine Oocytes[J]. Biol Reprod, 2016, 94(1):15. doi: 10.1095/biolreprod.115.130187.
doi: 10.1095/biolreprod.115.130187 pmid: 26632608 |
[31] |
Song J, Wang X, Guo Y, et al. Novel high-coverage targeted metabolomics method (SWATHtoMRM) for exploring follicular fluid metabolome alterations in women with recurrent spontaneous abortion undergoing in vitro fertilization[J]. Sci Rep, 2019, 9(1):10873. doi: 10.1038/s41598-019-47370-7.
doi: 10.1038/s41598-019-47370-7 URL |
[32] |
Fayezi S, Leroy J, Ghaffari Novin M, et al. Oleic acid in the modulation of oocyte and preimplantation embryo development[J]. Zygote, 2018, 26(1):1-13. doi: 10.1017/S0967199417000582.
doi: 10.1017/S0967199417000582 URL |
[33] |
邢亚楠, 张勇, 黄娇娇, 等. 母马大、小卵泡的卵泡液代谢组学分析及其对卵泡发育的影响[J]. 中国畜牧杂志, 2019, 55(10):5-9. doi: CNKI:SUN:ZGXM.0.2019-10-002.
doi: CNKI:SUN:ZGXM.0.2019-10-002 |
[34] |
Neven A, Laven J, Teede HJ, et al. A Summary on Polycystic Ovary Syndrome: Diagnostic Criteria, Prevalence, Clinical Manifestations, and Management According to the Latest International Guidelines[J]. Semin Reprod Med, 2018, 36(1):5-12. doi: 10.1055/s-0038-1668085.
doi: 10.1055/s-0038-1668085 URL |
[35] |
Yang Z, Zhou W, Zhou C, et al. Steroid metabolome profiling of follicular fluid in normo- and hyperandrogenic women with polycystic ovary syndrome[J]. J Steroid Biochem Mol Biol, 2021, 206:105806. doi: 10.1016/j.jsbmb.2020.105806.
doi: 10.1016/j.jsbmb.2020.105806 URL |
[36] |
Sun Z, Chang HM, Wang A, et al. Identification of potential metabolic biomarkers of polycystic ovary syndrome in follicular fluid by SWATH mass spectrometry[J]. Reprod Biol Endocrinol, 2019, 17(1):45. doi: 10.1186/s12958-019-0490-y.
doi: 10.1186/s12958-019-0490-y URL |
[37] |
Chen X, Lu T, Wang X, et al. Metabolic alterations associated with polycystic ovary syndrome: A UPLC Q-Exactive based metabolomic study[J]. Clin Chim Acta, 2020, 502:280-286. doi: 10.1016/j.cca.2019.11.016.
doi: 10.1016/j.cca.2019.11.016 URL |
[38] |
Chen M, Zhang B, Cai S, et al. Metabolic disorder of amino acids, fatty acids and purines reflects the decreases in oocyte quality and potential in sows[J]. J Proteomics, 2019, 200:134-143. doi: 10.1016/j.jprot.2019.03.015.
doi: 10.1016/j.jprot.2019.03.015 URL |
[39] |
Bai Y, Zhang F, Zhang H, et al. Follicular Fluid Metabolite Changes in Dairy Cows with Inactive Ovary Identified Using Untargeted Metabolomics[J]. Biomed Res Int, 2020, 2020:9837543. doi: 10.1155/2020/9837543.
doi: 10.1155/2020/9837543 |
[1] | XIAO Nan, LI Yong-cheng, YAO Yi-ming, SUN Hong-wen, YAO Ru-qiang, CHEN Yong-jun, YIN Yu-chen, LUO Hai-ning. Associations between Phthalates Exposure and Inflammatory Cytokines in Ovarian Microenvironment [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 353-360. |
[2] | JIANG Nan, ZHAO Xiao-li, LUAN Zu-qian, HUANG Zhi-yun, XIA Tian. Research Progress on the Correlation between Oxidative Stress and Aneuploidy in Oocytes of Aging Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 415-419. |
[3] | WEN Xing-xing, CHAI Meng-han, YANG Ni, ZOU Hui-juan, ZHANG Zhi-guo, LI Lin, CHEN Bei-li. A Case of Oocyte Maturation Arrest Caused by Heterozygous Variation of TUBB8 Gene c.154-156del [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 17-19. |
[4] | ZHANG Yu-jie, WANG Wen-cheng, ZHANG Ning. Research Progress of GDF-9 and BMP-15 on Follicular Development and Insulin Resistance in PCOS [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 487-491. |
[5] | YE Ming-zhu, ZHENG Jie, LI Jie-peng, XU Li-xin. Application of Oocyte Cryopreservation in Patients with Iatrogenic Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 498-502. |
[6] | LIU Xu, YANG Ai-jun, LI Ze-wu, SHI Cheng, LIU Li-jun, KONG Xiao-li, WANG Jing-wen. The Mechanism of Platelet-Rich Plasma on Improving Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 329-333. |
[7] | LI Yan, HU Fang-fang, CHEN Huan-huan, ZHANG Lei, ZHANG Cui-lian, LIANG Lin-lin. Research Progress of In Vitro Three-Dimensional Culture System of Preantral Follicles [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 221-225. |
[8] | YANG Zhi-juan, YAO Ting, HOU Hai-yan. Mitophagy and Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 240-244. |
[9] | TIAN Hui, ZHANG Yu, ZHAO Xiao-xi. The Relationship between PIWI-Interacting RNA and Reproductive Function [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 150-155. |
[10] | CUI Yu-gui, JIA Hong-yan, SHI Chen-nan, YAN Zheng-jie, LIU Jia-yin, MA Xiang. Clinical Practice of Oocyte Mitochondrial Transplantation and Ethical Issue [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 89-94. |
[11] | GAN Dong-ying, ZHOU Hong. Research Progress in Metabolomics of Oocyte Microenvironment in Elderly Women [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(6): 494-498. |
[12] | WANG Zi-xin, SONG Jia-yi, XIA Tian. Effect of Circadian Rhythm Disorder on Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(4): 317-321. |
[13] | ZHANG Jie, WANG Jing, HOU Zhen, MAO Yun-dong. Research Progress of the Diagnosis of Minimal/Mild Endometriosis [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(2): 151-155. |
[14] | ZHU Yuan, YI Shan-ling, ZHOU Jian-jun. Predictors Analysis of Obtaining MⅡ Oocytes or Transferable Embryos in Mild Ovarian Stimulation with Clomiphene Citrate [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 6-11. |
[15] | WU Shuo, JIAO Li-yuan, HOU Hai-yan. Research Progress of Antioxidants Supplement on Improvement of Oocyte Mitochondrial Function and Reproductive Outcomes in Infertile Women [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 62-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||