[1] |
Saunders P, Horne AW. Endometriosis: Etiology, pathobiology, and therapeutic prospects[J]. Cell, 2021, 184(11):2807-2824. doi: 10.1016/j.cell.2021.04.041.
doi: 10.1016/j.cell.2021.04.041
pmid: 34048704
|
[2] |
Corachán A, Pellicer N, Pellicer A, et al. Novel therapeutic targets to improve IVF outcomes in endometriosis patients: a review and future prospects[J]. Hum Reprod Update, 2021, 27(5):923-972. doi: 10.1093/humupd/dmab014.
doi: 10.1093/humupd/dmab014
pmid: 33930149
|
[3] |
Arablou T, Delbandi AA, Khodaverdi S, et al. Resveratrol reduces the expression of insulin-like growth factor-1 and hepatocyte growth factor in stromal cells of women with endometriosis compared with nonendometriotic women[J]. Phytother Res, 2019, 33(4):1044-1054. doi: 10.1002/ptr.6298.
doi: 10.1002/ptr.6298
pmid: 30838714
|
[4] |
Vercellini P, Viganò P, Somigliana E, et al. Endometriosis: pathogenesis and treatment[J]. Nat Rev Endocrinol, 2014, 10(5):261-275. doi: 10.1038/nrendo.2013.255.
doi: 10.1038/nrendo.2013.255
pmid: 24366116
|
[5] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042.
doi: 10.1016/j.cell.2012.03.042
pmid: 22632970
|
[6] |
Zhang Y, Chang X, Wu D, et al. Down-regulation of Exosomal miR-214-3p Targeting CCN2 Contributes to Endometriosis Fibrosis and the Role of Exosomes in the Horizontal Transfer of miR-214-3p[J]. Reprod Sci, 2021, 28(3):715-727. doi: 10.1007/s43032-020-00350-z.
doi: 10.1007/s43032-020-00350-z
pmid: 33048316
|
[7] |
Zhang Y, Liu X, Deng M, et al. Ferroptosis induced by iron overload promotes fibrosis in ovarian endometriosis and is related to subpopulations of endometrial stromal cells[J]. Front Pharmacol, 2022, 13:930614. doi: 10.3389/fphar.2022.930614.
doi: 10.3389/fphar.2022.930614
|
[8] |
Matsuzaki S, Darcha C. Antifibrotic properties of epigallocatechin-3-gallate in endometriosis[J]. Hum Reprod, 2014, 29(8):1677-1687. doi: 10.1093/humrep/deu123.
doi: 10.1093/humrep/deu123
URL
|
[9] |
Tanbo T, Fedorcsak P. Endometriosis-associated infertility: aspects of pathophysiological mechanisms and treatment options[J]. Acta Obstet Gynecol Scand, 2017, 96(6):659-667. doi: 10.1111/aogs.13082.
doi: 10.1111/aogs.13082
|
[10] |
Ni Z, Li Y, Song D, et al. Iron-overloaded follicular fluid increases the risk of endometriosis-related infertility by triggering granulosa cell ferroptosis and oocyte dysmaturity[J]. Cell Death Dis, 2022, 13(7):579. doi: 10.1038/s41419-022-05037-8.
doi: 10.1038/s41419-022-05037-8
pmid: 35787614
|
[11] |
Li A, Ni Z, Zhang J, et al. Transferrin Insufficiency and Iron Overload in Follicular Fluid Contribute to Oocyte Dysmaturity in Infertile Women With Advanced Endometriosis[J]. Front Endocrinol (Lausanne), 2020, 11:391. doi: 10.3389/fendo.2020.00391.
doi: 10.3389/fendo.2020.00391
URL
|
[12] |
Ding J, Zhao Q, Zhou Z, et al. HuayuJiedu Fang Protects Ovarian Function in Mouse with Endometriosis Iron Overload by Inhibiting Ferroptosis[J]. Evid Based Complement Alternat Med, 2022, 2022:1406820. doi: 10.1155/2022/1406820.
doi: 10.1155/2022/1406820
|
[13] |
Almeida CP, Ferreira M, Silveira CO, et al. Clinical correlation of apoptosis in human granulosa cells-A review[J]. Cell Biol Int, 2018, 42(10):1276-1281. doi: 10.1002/cbin.11036.
doi: 10.1002/cbin.11036
pmid: 30080285
|
[14] |
Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases[J]. Biochim Biophys Acta Gen Subj, 2019, 1863(9):1398-1409. doi: 10.1016/j.bbagen.2019.06.010.
doi: 10.1016/j.bbagen.2019.06.010
URL
|
[15] |
Naes SM, Basri O, Ismail F, et al. Impact of elemental iron on human spermatozoa and mouse embryonic development in a defined synthetic culture medium[J]. Reprod Biol, 2017, 17(3):199-209. doi: 10.1016/j.repbio.2017.05.002.
doi: S1642-431X(17)30074-8
pmid: 28532595
|
[16] |
Chen X, Zhou Y, Wu D, et al. Iron overload compromises preimplantation mouse embryo development[J]. Reprod Toxicol, 2021, 105:156-165. doi: 10.1016/j.reprotox.2021.08.010.
doi: 10.1016/j.reprotox.2021.08.010
pmid: 34481919
|
[17] |
Li S, Zhou Y, Huang Q, et al. Iron overload in endometriosis peritoneal fluid induces early embryo ferroptosis mediated by HMOX1[J]. Cell Death Discov, 2021, 7(1):355. doi: 10.1038/s41420-021-00751-2.
doi: 10.1038/s41420-021-00751-2
pmid: 34782602
|
[18] |
Woo JH, Choi YS, Choi JH. Iron-Storage Protein Ferritin Is Upregulated in Endometriosis and Iron Overload Contributes to a Migratory Phenotype[J]. Biomedicines, 2020, 8(11):454. doi: 10.3390/biomedicines8110454.
doi: 10.3390/biomedicines8110454
URL
|
[19] |
Thilaganathan B. Placental syndromes: getting to the heart of the matter[J]. Ultrasound Obstet Gynecol, 2017, 49(1):7-9. doi: 10.1002/uog.17378.
doi: 10.1002/uog.17378
pmid: 28067440
|
[20] |
Sibley CP. Treating the dysfunctional placenta[J]. J Endocrinol, 2017, 234(2):R81-R97. doi: 10.1530/JOE-17-0185.
doi: 10.1530/JOE-17-0185
URL
|
[21] |
Burton GJ, Redman CW, Roberts JM, et al. Pre-eclampsia: pathophysiology and clinical implications[J]. BMJ, 2019, 366:l2381. doi: 10.1136/bmj.l2381.
doi: 10.1136/bmj.l2381
|
[22] |
Xu M, Guo D, Gu H, et al. Selenium and Preeclampsia: a Systematic Review and Meta-analysis[J]. Biol Trace Elem Res, 2016, 171(2):283-292. doi: 10.1007/s12011-015-0545-7.
doi: 10.1007/s12011-015-0545-7
pmid: 26516080
|
[23] |
Polak G, Wertel I, Tarkowski R, et al. Peritoneal fluid iron levels in women with endometriosis[J]. Ginekol Pol, 2010, 81(1):20-23.
|
[24] |
Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities[J]. Fertil Steril, 1997, 68(4):585-596. doi: 10.1016/s0015-0282(97)00191-x.
doi: 10.1016/s0015-0282(97)00191-x
pmid: 9341595
|
[25] |
Ng SW, Norwitz SG, Taylor HS, et al. Endometriosis: The Role of Iron Overload and Ferroptosis[J]. Reprod Sci, 2020, 27(7):1383-1390. doi: 10.1007/s43032-020-00164-z.
doi: 10.1007/s43032-020-00164-z
|
[26] |
Li Y, Zeng X, Lu D, et al. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis[J]. Hum Reprod, 2021, 36(4):951-964. doi: 10.1093/humrep/deaa363.
doi: 10.1093/humrep/deaa363
URL
|
[27] |
Samimi M, Pourhanifeh MH, Mehdizadehkashi A, et al. The role of inflammation, oxidative stress, angiogenesis, and apoptosis in the pathophysiology of endometriosis: Basic science and new insights based on gene expression[J]. J Cell Physiol, 2019, 234(11):19384-19392. doi: 10.1002/jcp.28666.
doi: 10.1002/jcp.28666
pmid: 31004368
|
[28] |
Li G, Lin Y, Zhang Y, et al. Endometrial stromal cell ferroptosis promotes angiogenesis in endometriosis[J]. Cell Death Discov, 2022, 8(1):29. doi: 10.1038/s41420-022-00821-z.
doi: 10.1038/s41420-022-00821-z
pmid: 35039492
|
[29] |
Wan Y, Gu C, Kong J, et al. Long noncoding RNA ADAMTS9-AS1 represses ferroptosis of endometrial stromal cells by regulating the miR-6516-5p/GPX4 axis in endometriosis[J]. Sci Rep, 2022, 12(1):2618. doi: 10.1038/s41598-022-04963-z.
doi: 10.1038/s41598-022-04963-z
pmid: 35173188
|