Journal of International Reproductive Health/Family Planning ›› 2024, Vol. 43 ›› Issue (3): 222-227.doi: 10.12280/gjszjk.20230512
• Review • Previous Articles Next Articles
WU Zhu-lian, WANG Cai-zhu, ZHOU Hong, CHEN Huan-hua, LIN Ruo-yun, SHU Jin-hui△()
Received:
2023-12-20
Published:
2024-05-15
Online:
2024-05-14
Contact:
SHU Jin-hui, E-mail: WU Zhu-lian, WANG Cai-zhu, ZHOU Hong, CHEN Huan-hua, LIN Ruo-yun, SHU Jin-hui. Research Progress on the Cryopreservation of Small Numbers of Human Sperm[J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 222-227.
Add to citation manager EndNote|Ris|BibTeX
[1] | Luo XF, Huang C, Ji XR, et al. Micro-straw: An efficient cryopreservation carrier for rare human spermatozoa[J]. Andrology, 2022, 10(4):710-719. doi: 10.1111/andr.13164. |
[2] | Ohno M, Tanaka A, Nagayoshi M, et al. Modified permeable cryoprotectant-free vitrification method for three or fewer ejaculated spermatozoa from cryptozoospermic men and 7-year follow-up study of 14 children born from this method[J]. Hum Reprod, 2020, 35(5):1019-1028. doi: 10.1093/humrep/deaa072. |
[3] | Auth CA, Hopkins BK. Nitrogen vapor immersion: An accessible alternative for honey bee (Apis mellifera L.) semen cryopreservation[J]. Cryobiology, 2021, 100:12-18. doi: 10.1016/j.cryobiol.2021.04.006. |
[4] | Peng QP, Cao SF, Lyu QF, et al. A novel method for cryopreservation of individual human spermatozoa[J]. In Vitro Cell Dev Biol Anim, 2011, 47(8):565-572. doi: 10.1007/s11626-011-9428-1. |
[5] |
Herbemont C, Mnallah S, Bennani-Smires B, et al. Cryopreservation of small numbers of human spermatozoa in a Stripper tip: Report of the first live-birth worldwide[J]. Cryobiology, 2021, 99:103-105. doi: 10.1016/j.cryobiol.2021.01.005.
pmid: 33400960 |
[6] |
Belenky M, Itzhakov D, Freger V, et al. Optimizing the protocol for vitrification of individual spermatozoa by adjusting equilibration time[J]. Syst Biol Reprod Med, 2020, 66(3):223-228. doi: 10.1080/19396368.2020.1737271.
pmid: 32208003 |
[7] | Jiang LY, Kong FF, Yao L, et al. A novel solution for freezing individual spermatozoa using a right angular cryopiece embedded in a grooved petri dish[J]. Andrologia, 2022, 54(11):e14619. doi: 10.1111/and.14619. |
[8] | Hughes G, Martins da Silva S. Sperm cryopreservation for impaired spermatogenesis[J]. Reprod Fertil, 2022, 4(1):e220106. doi: 10.1530/RAF-22-0106. |
[9] |
Blommaert D, Franck T, Donnay I, et al. Substitution of egg yolk by a cyclodextrin-cholesterol complex allows a reduction of the glycerol concentration into the freezing medium of equine sperm[J]. Cryobiology, 2016, 72(1):27-32. doi: 10.1016/j.cryobiol.2015.11.008.
pmid: 26687387 |
[10] |
Zandiyeh S, Shahverdi A, Ebrahimi B, et al. A novel approach for human sperm cryopreservation with AFPⅢ[J]. Reprod Biol, 2020, 20(2):169-174. doi: 10.1016/j.repbio.2020.03.006.
pmid: 32279880 |
[11] | Sun L, He M, Wu C, et al. Beneficial Influence of Soybean Lecithin Nanoparticles on Rooster Frozen-Thawed Semen Quality and Fertility[J]. Animals(Basel), 2021, 11(6):1769. doi: 10.3390/ani11061769. |
[12] |
Khodaei-Motlagh M, Masoudi R, Karimi-Sabet MJ, et al. Supplementation of sperm cooling medium with Zinc and Zinc oxide nanoparticles preserves rooster sperm quality and fertility potential[J]. Theriogenology, 2022, 183:36-40. doi: 10.1016/j.theriogenology.2022.02.015.
pmid: 35193058 |
[13] | Correia L, Espírito-Santo CG, Braga RF, et al. Addition of antifreeze protein typeⅠorⅢto extenders for ram sperm cryopreservation[J]. Cryobiology, 2021, 98:194-200. doi: 10.1016/j.cryobiol.2020.11.001. |
[14] |
Qadeer S, Khan MA, Ansari MS, et al. A Novel Recombinant Eel Pout (Macrozoarces americans) TypeⅢAntifreeze Protein Improves Cryosurvival of Buffalo Sperm[J]. Cryo Letters, 2019, 40(6):347-351.
pmid: 33966061 |
[15] | Masuda Y, Kheawkanha T, Nagahama A, et al. Antifreeze protein typeⅢaddition to freezing extender comprehensively improves post-thaw sperm properties in Okinawan native Agu pig[J]. Anim Reprod Sci, 2023, 252:107232. doi: 10.1016/j.anireprosci.2023.107232. |
[16] |
Nadri T, Towhidi A, Zeinoaldini S, et al. Lecithin nanoparticles enhance the cryosurvival of caprine sperm[J]. Theriogenology, 2019, 133:38-44. doi: 10.1016/j.theriogenology.2019.04.024.
pmid: 31055160 |
[17] | Shahin MA, Khalil WA, Saadeldin IM, et al. Comparison between the Effects of Adding Vitamins, Trace Elements, and Nanoparticles to SHOTOR Extender on the Cryopreservation of Dromedary Camel Epididymal Spermatozoa[J]. Animals(Basel), 2020, 10(1):78. doi: 10.3390/ani10010078. |
[18] | Hosseinmardi M, Siadat F, Sharafi M, et al. Protective Effect of Cerium Oxide Nanoparticles on Human Sperm Function During Cryopreservation[J]. Biopreserv Biobank, 2022, 20(1):24-30. doi: 10.1089/bio.2021.0020. |
[19] | Ghafarizadeh A, Malmir M, Naderi Noreini S, et al. Antioxidant effects of N-acetylcysteine on the male reproductive system: A systematic review[J]. Andrologia, 2021, 53(1):e13898. doi: 10.1111/and.13898. |
[20] | Jannatifar R, Asa E, Sahraei SS, et al. N-acetyl-l-cysteine and alpha lipoic acid are protective supplement on human sperm parameters in cryopreservation of asthenoteratozoospermia patients[J]. Andrologia, 2022, 54(11):e14612. doi: 10.1111/and.14612. |
[21] |
Ghantabpour T, Nashtaei MS, Nekoonam S, et al. The Effect of Astaxanthin on Motility, Viability, Reactive Oxygen Species, Apoptosis, and Lipid Peroxidation of Human Spermatozoa During the Freezing-Thawing Process[J]. Biopreserv Biobank, 2022, 20(4):367-373. doi: 10.1089/bio.2021.0112.
pmid: 35984938 |
[22] |
Vazquez-Levin MH, Verón GL. Myo-inositol in health and disease: its impact on semen parameters and male fertility[J]. Andrology, 2020, 8(2):277-298. doi: 10.1111/andr.12718.
pmid: 31637826 |
[23] | Azizi M, Cheraghi E, Soleimani Mehranjani M. Effect of Myo-inositol on sperm quality and biochemical factors in cryopreserved semen of patients with Asthenospermia[J]. Andrologia, 2022, 54(10):e14528. doi: 10.1111/and.14528. |
[24] | Bahmyari R, Zare M, Sharma R, et al. The efficacy of antioxidants in sperm parameters and production of reactive oxygen species levels during the freeze-thaw process: A systematic review and meta-analysis[J]. Andrologia, 2020, 52(3):e13514. doi: 10.1111/and.13514. |
[25] |
Rahiminia T, Hosseini A, Anvari M, et al. Modern human sperm freezing: Effect on DNA, chromatin and acrosome integrity[J]. Taiwan J Obstet Gynecol, 2017, 56(4):472-476. doi: 10.1016/j.tjog.2017.02.004.
pmid: 28805603 |
[26] | Li YX, Zhou L, Lv MQ, et al. Vitrification and conventional freezing methods in sperm cryopreservation: A systematic review and meta-analysis[J]. Eur J Obstet Gynecol Reprod Biol, 2019, 233:84-92. doi: 10.1016/j.ejogrb.2018.11.028. |
[27] | Wang M, Todorov P, Wang W, et al. Cryoprotectants-Free Vitrification and Conventional Freezing of Human Spermatozoa: A Comparative Transcript Profiling[J]. Int J Mol Sci, 2022, 23(6):3047. doi: 10.3390/ijms23063047. |
[28] | Arciero V, Ammar O, Maggi M, et al. Vapour fast freezing with low semen volumes can highly improve motility and viability or DNA quality of cryopreserved human spermatozoa[J]. Andrology, 2022, 10(6):1123-1133. doi: 10.1111/andr.13208. |
[29] | Maleki B, Khalili MA, Gholizadeh L, et al. Single sperm vitrification with permeable cryoprotectant-free medium is more effective in patients with severe oligozoospermia and azoospermia[J]. Cryobiology, 2022, 104:15-22. doi: 10.1016/j.cryobiol.2021.11.176. |
[30] | Schulz M, Risopatrón J, Matus G, et al. Trehalose sustains a higher post-thaw sperm motility than sucrose in vitrified human sperm[J]. Andrologia, 2017 Nov; 49(9). doi: 10.1111/and.12757. |
[31] |
Ali Mohamed MS. Slow cryopreservation is not superior to vitrification in human spermatozoa; an experimental controlled study[J]. Iran J Reprod Med, 2015, 13(10):633-644.
pmid: 26644792 |
[32] |
Zhu J, Jin RT, Wu LM, et al. Cryoprotectant-free ultra-rapid freezing of human spermatozoa in cryogenic vials[J]. Andrologia, 2014, 46(6):642-649. doi: 10.1111/and.12131.
pmid: 23822810 |
[33] |
Pabón D, Meseguer M, Sevillano G, et al. A new system of sperm cryopreservation: evaluation of survival, motility, DNA oxidation, and mitochondrial activity[J]. Andrology, 2019, 7(3):293-301. doi: 10.1111/andr.12607.
pmid: 30916488 |
[34] | Schulz M, Risopatrón J, Uribe P, et al. Human sperm vitrification: A scientific report[J]. Andrology, 2020, 8(6):1642-1650. doi: 10.1111/andr.12847. |
[35] | 张洲, 杨杰, 孙莹璞, 等. 自身精子冷冻保存的中国专家共识[J]. 生殖医学杂志, 2023, 32(3):316-322. doi: 10.3969/j.issn.1004-3845.2023.03.003. |
[1] | ZHAO An-qi, LIU Lin, TAN Xiao-fang. HPV Transmission through Sperm and Its Impact on Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 328-331. |
[2] | YE Ming-zhu, ZHENG Jie, LI Jie-peng, XU Li-xin. Application of Oocyte Cryopreservation in Patients with Iatrogenic Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 498-502. |
[3] | CHANG Tian-qing, WU Hua, FENG Rui-zhi, QIAN Yun. Research Progress of Proteins Related to Sperm Acrosome Development [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 44-49. |
[4] | LIANG Hui-zhi, WANG Zhi-hong, YANG Pan. Effect of Cryopreservation Time on the Outcome of Frozen-Thawed Embryos Transplant [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 370-374. |
[5] | HUANG Shao-feng, NIU Xiang-li, LIN Zhong, ZHU Xue-hong, BIN Li, LIU Shu-cen. Injury Factors of Vitrification Cryopreservation and Transplantation of Ovarian Cortex [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(4): 308-312. |
[6] | JI Hui, DONG Li, ZHAO Chun, LING Xiu-feng, DING Hui. Immediate Versus Delayed Frozen-Thawed Embryo Transfer in Patients Following a Freeze-All IVF-ET Cycle [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(3): 189-194. |
[7] | XU Yu-wei, LI Wen-jing, MAO Xin-yi, MA Zhuo-yao, DING Zhi-de. The Role of Sperm TsRNA in Paternal Inheritance [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 37-41. |
[8] | XIE Qi-jun, LI Xin, JIANG Wei, ZHAO Chun, LING Xiu-feng. Impacts of Female Low Body Mass Index on Pregnancy and Perinatal Outcomes of Frozen-Thawed Embryo Transfer [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 446-451. |
[9] | ZHANG Meng-hui, LIU Xiao-cong, GUO Yi-hong. N6-Methyladenosine in Reproductive System: Effect and Regulation [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(4): 306-309. |
[10] | CHEN Xiao-jun, JIA Yu-sen, ZHANG Zhi-jie. Protamine and Teratozoospermia: A Short Review [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(3): 216-220. |
[11] | REN Mei-qi, YANG Han-yun, SHI Xiao. Research Progress in the Physiological Mechanism of Sperm Activition [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(6): 519-523. |
[12] | ZHANG Guo-zhong, ZHENG Jie, HU Yan-mei, WU Xue-yi, XIE Ping, YANG Zong-fu. Effect of Supplementary Inositol on Sperm Quality in Infertile Men [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(6): 524-528. |
[13] | ZHANG Pan-pan, Nuerbiya Alifu, Maowulan Maimaitiyiming, MA Wen-jing, Xieraili Maimaiti, Adilijiang Yiming, Xiamixinuer Yilike, TONG Zhuo-yun. Screening and Bioinformatics Analysis of Sperm Differentially Expressed Proteins by Tandem Mass Spectrometry Tags Technology in Patients with Asthenozoospermia [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(5): 357-360. |
[14] | XIE Qing-e, WANG Meng-yao, LIANG Tan, LIU Ya-jing. Research Progress of Melatonin in Assisted Reproductive Technology [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(5): 397-400. |
[15] | XING Ya-chun,LING Xiu-feng,SU Yan,ZHAO Chun,ZHANG Jun-qiang. Research Progress of GnRHa Down-Regulation Protocols in Frozen-Thawed Embryo Transfer [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(3): 233-237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||