国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (6): 492-497.doi: 10.12280/gjszjk.20230216
收稿日期:
2023-05-26
出版日期:
2023-11-15
发布日期:
2023-11-09
通讯作者:
程艳香
E-mail:yanxiangCheng@whu.edu.cn
基金资助:
XIANG Chun-rong, DENG Zhi-min, DAI Fang-fang, CHENG Yan-xiang()
Received:
2023-05-26
Published:
2023-11-15
Online:
2023-11-09
Contact:
CHENG Yan-xiang
E-mail:yanxiangCheng@whu.edu.cn
摘要:
早发性卵巢功能不全(premature ovarian insufficiency,POI)是育龄期女性不孕的常见原因之一,发病率逐年上升,对女性生理及心理健康造成了重要影响。POI病因多样、机制复杂,临床上现有的治疗手段有限,最常用的激素替代治疗以改善患者症状为主,无法从根本上恢复卵巢功能。随着再生医学的发展,发现间充质干细胞(mesenchymal stem cells,MSCs)及其外泌体(exosomes,EXOs)移植能够通过促进颗粒细胞(granulosa cells,GCs)增殖、抑制GCs凋亡、抗炎、抗氧化、抗纤维化、促进血管生成和卵泡发育以及调节免疫等机制修复卵巢功能,提高POI患者的生育能力,为POI治疗带来新的前景,但其安全性、有效性仍待进一步研究验证。
向春蓉, 邓志敏, 代芳芳, 程艳香. 间充质干细胞及其外泌体治疗早发性卵巢功能不全的临床研究及其进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 492-497.
XIANG Chun-rong, DENG Zhi-min, DAI Fang-fang, CHENG Yan-xiang. Clinical Studies of MSCs and MSCs-Derived Exosomes in Premature Ovarian Insufficiency, and Research Progress[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 492-497.
[1] | Ishizuka B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI)[J]. Front Endocrinol (Lausanne), 2021, 12:626924. doi: 10.3389/fendo.2021.626924. |
[2] | Han QF, Li WJ, Hu KS, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer[J]. Mol Cancer, 2022, 21(1):207. doi: 10.1186/s12943-022-01671-0. |
[3] |
Yang M, Lin L, Sha C, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN[J]. Lab Invest, 2020, 100(3):342-352. doi: 10.1038/s41374-019-0321-y.
pmid: 31537899 |
[4] |
El-Derany MO, Said RS, El-Demerdash E. Bone Marrow-Derived Mesenchymal Stem Cells Reverse Radiotherapy-Induced Premature Ovarian Failure: Emphasis on Signal Integration of TGF-β, Wnt/β-Catenin and Hippo Pathways[J]. Stem Cell Rev Rep, 2021, 17(4):1429-1445. doi: 10.1007/s12015-021-10135-9.
pmid: 33594662 |
[5] | Edessy M, Hosni H, Shady Y, et al. Autologous stem cells therapy, The first baby of idiopathic premature ovarian failure[J]. Acta Med Int, 2016, 3(1):19-23. doi: 10.5530/ami.2016.1.7. |
[6] | Igboeli P, El Andaloussi A, Sheikh U, et al. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature[J]. J Med Case Rep, 2020, 14(1):108. doi: 10.1186/s13256-020-02426-5. |
[7] |
Sun B, Ma Y, Wang F, et al. miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis[J]. Stem Cell Res Ther, 2019, 10(1):360. doi: 10.1186/s13287-019-1442-3.
pmid: 31783913 |
[8] |
Shen J, Cao D, Sun JL. Ability of human umbilical cord mesenchymal stem cells to repair chemotherapy-induced premature ovarian failure[J]. World J Stem Cells, 2020, 12(4):277-287. doi: 10.4252/wjsc.v12.i4.277.
pmid: 32399136 |
[9] | Zhu SF, Hu HB, Xu HY, et al. Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries[J]. J Cell Mol Med, 2015, 19(9):2108-2117. doi: 10.1111/jcmm.12571. |
[10] |
Lu X, Bao H, Cui L, et al. hUMSC transplantation restores ovarian function in POI rats by inhibiting autophagy of theca-interstitial cells via the AMPK/mTOR signaling pathway[J]. Stem Cell Res Ther, 2020, 11(1):268. doi: 10.1186/s13287-020-01784-7.
pmid: 32620136 |
[11] |
Yin N, Wu C, Qiu J, et al. Protective properties of heme oxygenase-1 expressed in umbilical cord mesenchymal stem cells help restore the ovarian function of premature ovarian failure mice through activating the JNK/Bcl-2 signal pathway-regulated autophagy and upregulating the circulating of CD8+CD28- T cells[J]. Stem Cell Res Ther, 2020, 11(1):49. doi: 10.1186/s13287-019-1537-x.
pmid: 32019599 |
[12] | Yan L, Wu Y, Li L, et al. Clinical analysis of human umbilical cord mesenchymal stem cell allotransplantation in patients with premature ovarian insufficiency[J]. Cell Prolif, 2020, 53(12):e12938. doi: 10.1111/cpr.12938. |
[13] |
Hong L, Yan L, Xin Z, et al. Protective effects of human umbilical cord mesenchymal stem cell-derived conditioned medium on ovarian damage[J]. J Mol Cell Biol, 2020, 12(5):372-385. doi: 10.1093/jmcb/mjz105.
pmid: 31742349 |
[14] | Cai JH, Sun YT, Bao S. HucMSCs-exosomes containing miR-21 promoted estrogen production in ovarian granulosa cells via LATS1-mediated phosphorylation of LOXL2 and YAP[J]. Gen Comp Endocrinol, 2022, 321-322:114015. doi: 10.1016/j.ygcen.2022.114015. |
[15] |
Qu Q, Liu L, Cui Y, et al. miR-126-3p containing exosomes derived from human umbilical cord mesenchymal stem cells promote angiogenesis and attenuate ovarian granulosa cell apoptosis in a preclinical rat model of premature ovarian failure[J]. Stem Cell Res Ther, 2022, 13(1):352. doi: 10.1186/s13287-022-03056-y.
pmid: 35883161 |
[16] |
Yin N, Zhao W, Luo Q, et al. Restoring Ovarian Function With Human Placenta-Derived Mesenchymal Stem Cells in Autoimmune-Induced Premature Ovarian Failure Mice Mediated by Treg Cells and Associated Cytokines[J]. Reprod Sci, 2018, 25(7):1073-1082. doi: 10.1177/1933719117732156.
pmid: 28954601 |
[17] | Ding C, Zou Q, Wu Y, et al. EGF released from human placental mesenchymal stem cells improves premature ovarian insufficiency via NRF2/HO-1 activation[J]. Aging (Albany NY), 2020, 12(3):2992-3009. doi: 10.18632/aging.102794. |
[18] | Seok J, Park H, Choi JH, et al. Placenta-Derived Mesenchymal Stem Cells Restore the Ovary Function in an Ovariectomized Rat Model via an Antioxidant Effect[J]. Antioxidants (Basel), 2020, 9(7):591. doi: 10.3390/antiox9070591. |
[19] | Kim KH, Kim EY, Kim GJ, et al. Human placenta-derived mesenchymal stem cells stimulate ovarian function via miR-145 and bone morphogenetic protein signaling in aged rats[J]. Stem Cell Res Ther, 2020, 11(1):472. doi: 10.1186/s13287-020-01988-x. |
[20] | Chen S, Wang Y, Liao L, et al. Similar Repair Effects of Human Placenta, Bone Marrow Mesenchymal Stem Cells, and Their Exosomes for Damaged SVOG Ovarian Granulosa Cells[J]. Stem Cells Int, 2020, 2020:8861557. doi: 10.1155/2020/8861557. |
[21] |
Ding C, Li H, Wang Y, et al. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics[J]. Stem Cell Res Ther, 2017, 8(1):173. doi: 10.1186/s13287-017-0613-3.
pmid: 28750654 |
[22] |
Ling L, Hou J, Liu D, et al. Important role of the SDF-1/CXCR4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (POI)[J]. Stem Cell Res Ther, 2022, 13(1):79. doi: 10.1186/s13287-022-02759-6.
pmid: 35197118 |
[23] | Ding C, Qian C, Hou S, et al. Exosomal miRNA-320a Is Released from hAMSCs and Regulates SIRT4 to Prevent Reactive Oxygen Species Generation in POI[J]. Mol Ther Nucleic Acids, 2020, 21:37-50. doi: 10.1016/j.omtn.2020.05.013. |
[24] | Xiao GY, Liu IH, Cheng CC, et al. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy[J]. PLoS One, 2014, 9(9):e106538. doi: 10.1371/journal.pone.0106538. |
[25] |
Huang B, Ding C, Zou Q, et al. Human Amniotic Fluid Mesenchymal Stem Cells Improve Ovarian Function During Physiological Aging by Resisting DNA Damage[J]. Front Pharmacol, 2020, 11:272. doi: 10.3389/fphar.2020.00272.
pmid: 32273842 |
[26] | Geng Z, Chen H, Zou G, et al. Human Amniotic Fluid Mesenchymal Stem Cell-Derived Exosomes Inhibit Apoptosis in Ovarian Granulosa Cell via miR-369-3p/YAF2/PDCD5/p53 Pathway[J]. Oxid Med Cell Longev, 2022, 2022:3695848. doi: 10.1155/2022/3695848. |
[27] |
Thabet E, Yusuf A, Abdelmonsif DA, et al. Extracellular vesicles miRNA-21: a potential therapeutic tool in premature ovarian dysfunction[J]. Mol Hum Reprod, 2020, 26(12):906-919. doi: 10.1093/molehr/gaaa068.
pmid: 33049041 |
[28] | Xiao GY, Cheng CC, Chiang YS, et al. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy[J]. Sci Rep, 2016, 6:23120. doi: 10.1038/srep23120. |
[29] | Su J, Ding L, Cheng J, et al. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency[J]. Hum Reprod, 2016, 31(5):1075-1086. doi: 10.1093/humrep/dew041. |
[30] | 白塔吉, 马玉珍. 脂肪间充质干细胞对小鼠化疗性卵巢功能不全的治疗作用及机制研究[J]. 中国妇产科临床杂志, 2022, 23(6):617-621. doi: 10.13390/j.issn.1672-1861.2022.06.015. |
[31] | Sen Halicioglu B, Saadat K, Tuglu MI. Adipose-Derived Mesenchymal Stem Cell Transplantation in Chemotherapy-Induced Premature Ovarian Insufficiency: the Role of Connexin and Pannexin[J]. Reprod Sci, 2022, 29(4):1316-1331. doi: 10.1007/s43032-021-00718-9. |
[32] |
Çil N, Mete GA. The effect of adipose-derived mesenchymal stem cell treatment on mTOR and p-mTOR expression in ovarian damage due to cyclophosphomide[J]. Reprod Toxicol, 2021, 103:71-78. doi: 10.1016/j.reprotox.2021.06.003.
pmid: 34098046 |
[33] |
Song K, Cai H, Zhang D, et al. Effects of human adipose-derived mesenchymal stem cells combined with estrogen on regulatory T cells in patients with premature ovarian insufficiency[J]. Int Immunopharmacol, 2018, 55:257-262. doi: 10.1016/j.intimp.2017.12.026.
pmid: 29288925 |
[34] |
Huang B, Lu J, Ding C, et al. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD[J]. Stem Cell Res Ther, 2018, 9(1):216. doi: 10.1186/s13287-018-0953-7.
pmid: 30092819 |
[35] | Yamchi NN, Rahbarghazi R, Bedate AM, et al. Menstrual blood CD146+ mesenchymal stem cells reduced fibrosis rate in the rat model of premature ovarian failure[J]. Cell Biochem Funct, 2021, 39(8):998-1008. doi: 10.1002/cbf.3669. |
[36] |
Fu X, Zhang S, Li T, et al. Menstrual blood-derived endometrial stem cells ameliorate the viability of ovarian granulosa cells injured by cisplatin through activating autophagy[J]. Reprod Toxicol, 2022, 110:39-48. doi: 10.1016/j.reprotox.2022.03.012.
pmid: 35346788 |
[37] | 徐焱焱, 颜贝, 王锐, 等. 经血间充质干细胞通过IGF-1信号通路改善小鼠卵巢早衰[J]. 山东大学学报(医学版), 2020, 58(2):13-20. |
[38] |
Zhang S, Huang B, Su P, et al. Concentrated exosomes from menstrual blood-derived stromal cells improves ovarian activity in a rat model of premature ovarian insufficiency[J]. Stem Cell Res Ther, 2021, 12(1):178. doi: 10.1186/s13287-021-02255-3.
pmid: 33712079 |
[1] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[2] | 王冬雪, 包莉莉, 刘珊, 杨波. 改良灵活拮抗剂方案对卵巢功能正常女性COH结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 185-189. |
[3] | 高朝阳, 章宁晴, 陈琼华, 吴荣锋. 环状RNA在子宫内膜异位症不孕患者卵泡颗粒细胞中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 243-248. |
[4] | 叶明珠, 郑洁, 李杰芃, 许莉欣. 医源性卵巢储备功能减退患者的卵母细胞冷冻生育力保存应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 498-502. |
[5] | 刘洪江, 姜小花, 魏兆莲. 间充质干细胞及其联合生物材料支架在宫腔粘连治疗中的应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 424-430. |
[6] | 柳絮, 杨爱军, 李泽武, 石城, 刘利君, 孔潇丽, 王靖雯. 富血小板血浆改善卵巢储备功能的相关机制[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 329-333. |
[7] | 陈楸妍, 鲁南, 刘嘉茵. 生长激素预处理在前次IVF/ICSI失败非DOR患者中的临床应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 184-188. |
[8] | 杨志娟, 姚婷, 侯海燕. 线粒体自噬与卵巢功能[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 240-244. |
[9] | 朱文彬, 许婧余, 马瑞红, 夏天, 栾祖乾. 脑源性神经营养因子与女性生殖的相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 140-144. |
[10] | 李濛, 吴亚梅, 李佳雯, 郑小敏, 应豪, 黄璐. 胎盘来源外泌体在诊断胎儿生长受限中的应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 156-160. |
[11] | 赵海君, 张皙卉, 陈静, 卢静, 张洪峰, 常文亮. 三种促排卵方案在高龄合并卵巢储备功能减退不孕症中的应用比较[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 13-17. |
[12] | 张玙, 夏天. 中西医结合治疗卵巢储备功能减退患者成功妊娠二例并文献复习[J]. 国际生殖健康/计划生育, 2022, 41(6): 460-463. |
[13] | 张磊, 梁琳琳, 冯科, 孟励, 张翠莲. 自噬在排卵障碍性不孕症中的作用[J]. 国际生殖健康/计划生育, 2022, 41(6): 504-508. |
[14] | 姚婷, 杨红梅, 崔立华, 孟庆芳. 自噬在早发性卵巢功能不全病理机制中的作用[J]. 国际生殖健康/计划生育, 2022, 41(4): 313-316. |
[15] | 王子昕, 宋佳怡, 夏天. 昼夜节律紊乱对女性卵巢功能的影响[J]. 国际生殖健康/计划生育, 2022, 41(4): 317-321. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||